教学目标• 理解并掌握用四边形的边判定四边形是平行四边行的判定方法• 会用边判定平行四边形的方法去进行有关的证明和计算平行四边形的性质:边平行四边形的对边平行平行四边形的对边相等角平行四边形的对角相等平行四边形的邻角互补对角线 平行四边形的对角线 互相平分自学指导• 和同桌讨论根据平行四边形的性质有关边逆定理是否成立?• 和同桌讨论根据平行四边形的性质有关边逆定理能否成为判定平行四边形方法 ?• 和同桌讨论分别把平行四边形的性质有关边逆定理的图形语言和符号语言表示出来并加以证明ABCD求证:四边形 ABCD 是平行四边形。 证明:连接 AC . AD∥BC ∴∠DAC=∠ACB AD=CB , AC=CA , ∴ΔADC≌ΔCBA ( S.A.S.)∴∠ACD=∠CAB∴AB∥CD ∴ 四边形 ABCD 是平行四边形 (平行四边形的定义)已知:在四边形 ABCD 中, AD BC 。两组对边分别平行的四边形是平行四边形。BDACO已知:四边形 ABCD, AC 、 BD 交于点 O 且 OA=OC , OB=OD求证:四边形 ABCD 是平行四边形4213证明: AO = CO , BO = DO ,∠ 1 = ∠2∴△AOB≌△COD∴AB ∥ CD 同理 AD ∥ BC∴ 四边形 ABCD 是平行四边形(两组对边分别平行的四边形是平行四边形)∴ ∠3 = ∠4判定二两组对边分别相等的四边形是平行四边形• 在平行四边形 ABCD 中, M,N 分别是 AB, CD 上的点, AM=CN,E,F 是 AC 上的点且 AE=CF. 求证:四边形 MENF 是平行四边形DBANEFMC 一组对边平行且相等的四边形是平行四边形ADCB几何语言 : AB∥CD , AB = CD∴ 四边形是平行四边形求证:四边形 ABCD 是平行四边形。 证明:连接 AC . AD=CB , AC=CA , CD=AB, ∴ΔADC≌ΔCBA ( S.S.S.)∴∠ACD=∠CAB∴AB∥CD ∴ 四边形 ABCD 是平行四边形 ( 一组对边平行且相等的四边形是平行四边形) 已知 : 在四边形 ABCD 中 , AD=BC,AB=CD.一组对边平行且相等的四边形是平行四边形)。BACD在 ΔADC 和 ΔCBA 中, 在下列条件中 , 不能判定四边形是平行四边形的是 ( )(A)AB CD,AD BC∥∥ (B) AB=CD,AD=BC (C)AB CD,AB=CD ∥(D) AB CD,AD=BC∥(E) AB CD, A=C∥∠∠DABCD例:已知:平行四边形 ABCD 中, E , F分别是边 AD , BC 的中点。 求证:四边形 EBFD 是平行 四边形证明: 四边形 ABCD 是平行 四边形 ∴AD BC ED=1/2AD BF=1/2BC...