电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

同济版高数教学设计完美版定积分VIP免费

同济版高数教学设计完美版定积分_第1页
1/23
同济版高数教学设计完美版定积分_第2页
2/23
同济版高数教学设计完美版定积分_第3页
3/23
高等数学教案第五章定积分1 第五章定积分教学目的:1、理解定积分的概念。2、掌握定积分的性质及定积分中值定理,掌握定积分的换元积分法与分部积分法。3、理解变上限定积分定义的函数,及其求导数定理,掌握牛顿—莱布尼茨公式。4、了解广义积分的概念并会计算广义积分。教学重点 :1、 定积分的性质及定积分中值定理2、定积分的换元积分法与分部积分法。3、牛顿—莱布尼茨公式。教学难点:1、定积分的概念2、积分中值定理3、定积分的换元积分法分部积分法。4、变上限函数的导数。§5 1 定积分概念与性质一、定积分问题举例1 曲边梯形的面积曲边梯形设函数 y f(x)在区间 [a b] 上非负、 连续由直线 x a、x b、y 0 及曲线 y f (x)所围成的图形称为曲边梯形其中曲线弧称为曲边求曲边梯形的面积的近似值将曲边梯形分割成一些小的曲边梯形每个小曲边梯形都用一个等宽的小矩形代替每个小曲边梯形的面积都近似地等于小矩形的面积则所有小矩形面积的和就是曲边梯形面积的近似值具体方法是在区间 [a b]中任意插入若干个分点a x0x1x2xn 1xn b把[ a b]分成 n 个小区间[x0 x1] [x1 x2] [x2 x3] [xn 1 xn ]它们的长度依次为x1 x1 x0x2 x2 x1xn xn xn 1经过每一个分点作平行于y 轴的直线段把曲边梯形分成n 个窄曲边梯形在每个小区间[ xi 1 xi ]上任取一点i以[xi 1 xi ]为底、f (i)为高的窄矩形近似替代第i 个窄曲边梯形 (i 1 2n) 把这样得到的n 个窄矩阵形面积之和作为所求曲边梯形面积A 的近似值即A f (1) x1 f (2) x2 f (n ) xnniiixf1)(求曲边梯形的面积的精确值高等数学教案第五章定积分2 显然分点越多、每个小曲边梯形越窄所求得的曲边梯形面积A 的近似值就越接近曲边梯形面积A 的精确值因此要求曲边梯形面积A 的精确值只需无限地增加分点使每个小曲边梯形的宽度趋于零记max{x1x2xn }于是上述增加分点使每个小曲边梯形的宽度趋于零相当于令0所以曲边梯形的面积为niiixfA10)(lim2 变速直线运动的路程设物体作直线运动已知速度 v v(t)是时间间隔 [T 1 T 2]上 t 的连续函数且 v(t) 0 计算在这段时间内物体所经过的路程S求近似路程我们把时间间隔 [T 1 T 2]分成 n 个小的时间间隔ti在每个小的时间间隔t i 内物体运动看成是均速的其速度近似为物体在时间间隔ti 内某点i 的速度v(i)物体在时间间隔ti 内 运动的距离近似为Si v(i)ti把物体在每一小的时间...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

同济版高数教学设计完美版定积分

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部