传递函数形式转换 传递函数模型可转化成零极点模型,也可转换成状态空间模型。 例一、模型转换 22235(56)52530( )(1) (2)32ssssG sssss % name:model_transform_01 clear,clc % 清除此前运行程序的变量,清屏 num1=5*[1,-5,6] % 传函分子多项式 den1=conv(conv([1,-1],[1,-1]),[1,2]) % 传函分母多项式 tfGs=tf(num1,den1) % 传函的分式形式 zpGs=zpk(tfGs) % 转换成传函的零极点形式 [z,p,k]=zpkdata(zpGs,'v') % 列出零极点和比例系数 ssGs=ss(tfGs) % 转换成状态空间形式 运行结果: num1 = 5 -25 30 den1 = 1 0 -3 2 Transfer function: 5 s^2 - 25 s + 30 ----------------- s^3 - 3 s + 2 Zero/pole/gain: 5 (s-3) (s-2) ------------- (s+2) (s-1)^2 z = 3.0000 2.0000 p = -2.0000 1.0000 1.0000 k = 5 a = x1 x2 x3 x1 0 0.75 -0.25 x2 4 0 0 x3 0 2 0 b = u 1 x 1 4 x 2 0 x 3 0 c = x 1 x 2 x 3 y 1 1.25 -1.563 0.9375 d = u 1 y 1 0 Continu ou s-time model. 状态方程:XaXbu 11223300.750.25440000200xxxxuxx 输出方程:TYc Xdu 1231.251.563 0.93750xyxux 例二、传递函数模型的串联 % series ex ample clear,clc nu m1=[0,1];den1=[1,1]; nu m2=[0,2];den2=[1,2]; nu m3=[0,3];den3=[1,3]; Gs1=tf(nu m1,den1) Gs2=tf(nu m2,den2) Gs3=tf(nu m3,den3) Gs4=series(Gs1,Gs2) % 不允许三连串 Gs4=series(Gs1,Gs2,Gs3) Gs5=series(Gs4,Gs3) Gs6=Gs1*Gs2*Gs3 % 允许三连乘 运行结果: Transfer fu nction: 1 ----- s + 1 Transfer fu nction: 2 ----- s + 2 Transfer fu nction: 3 ----- s + 3 Transfer fu nction: 2 ------------- s^2 + 3 s + 2 Transfer fu nction: 6 ---------------------- s^3 + 6 s^2 + 11 s + 6 Transfer fu nction: 6 ---------------------- s^3 + 6 s^2 + 11 s + 6 例三、传递函数模型的并联 % parallel ex ample clear,clc nu m1=[0,1];den1=[1,1]; nu m2=[0,2];den2=[1,2]; nu m...