电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

同济大学-高等数学微积分教案VIP免费

同济大学-高等数学微积分教案_第1页
1/38
同济大学-高等数学微积分教案_第2页
2/38
同济大学-高等数学微积分教案_第3页
3/38
1第一章:函数与极限1.1初等函数图象及性质1.1.1幂函数函数(m是常数)叫做幂函数。幂函数的定义域,要看m是什么数而定。例如,当m=3时,y=x3的定义域是(-∞,+∞);当m=1/2时,y=x1/2的定义域是[0,+∞);当m=-1/2时,y=x-1/2的定义域是(0,+∞)。但不论m取什么值,幂函数在(0,+∞)内总有定义。最常见的幂函数图象如下图所示:[如图]1.1.2指数函数与对数函数1.指数函数函数y=ax(a是常数且a>0,a≠1)叫做指数函数,它的定义域是区间(-∞,+∞)。因为对于任何实数值x,总有ax>0,又a0=1,所以指数函数的图形,总在x轴的上方,且通过点(0,1)。若a>1,指数函数ax是单调增加的。若00,a≠1),叫做对数函数。它的定义域是区间(0,+∞)。对数函数的图形与指数函数的图形关于直线y=x对称(图1-22)。y=logax的图形总在y轴上方,且通过点(1,0)。若a>1,对数函数logax是单调增加的,在开区间(0,1)内函数值为负,而在区间(1,+∞)内函数值为正。若0N时都有,我们就称a是数列{}的极限,或者称数列{}收敛,且收敛于a,记为,a即为的极限。数列极限的几何解释:以a为极限就是对任意给定的开区间,第N项以后的一切数全部落在这个区间内。1.3函数极限的概念设函数f(x)在点附近(但可能除掉点本身)有定义,设A为一个定数,如果对任意各定,一定存在,使得当时,总有,我们就称A是函数f(x)在点的极限,记作,这时称f(x)在点极限存在,这里我们不要求f(x)在点有定义,所以才有2。例如:,当x=1时,函数是没有定义的,但在x=1点函数的极限存在,为2。1.4单调有界数列必有极限单调有界数列必有极限,是判断极限存在的重要准则之一,具体叙述如下:如果数列满足条件,就称数列是单调增加的;反之则称为是单调减少的。在前面的章节中曾证明:收敛的数列必有界。但也曾指出:有界的数列不一定收敛。现在这个准则表明:如果数列不仅有界,而且是单调的,则其极限必定存在。对这一准则的直观说明是,对应与单调数列的点只可能向一个方向移动,所以只有两种可能情形:或者无限趋近某一定点;或者沿数轴移向无穷远(因为不趋向于任何定点且递增,已符合趋向无穷的定义)。但现在数列又是有界的,这就意味着移向无穷远已经不可能,所以必有极限。从这一准则出发,我们得到一个重要的应用。考虑数列,易证它是单调增加且有界(小于3),故可知这个数列极限存在,通常用字母e来表示它,即。可以证明,当x取实数而趋于或时,函数的极限存在且都等于e,这个e是无理数,它的值是e=2.718281828459045…1.5柯西(Cauchy)极限存在准则我们发现,有时候收敛数列不一定是单调的,因此,单调有界数列必有极限准则只是数列收敛的充分条件,而不是必要的。当然,其中有界这一条件是必要的。下面叙述的柯西极限存在准则,它给出了数列收敛的充分必要条件。柯西(Cauchy)极限存在准则数列收敛的充分必要条件是:对于任意给定的正数,存在着这样的正整数N,使得当m>N,n>N时,就有。必要性的证明设,若任意给定正数,则也是正数,于是由数列极限的定义,存在着正整数N,当n>...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

同济大学-高等数学微积分教案

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部