生活中的数学实例 一、现实的数学 20世纪 60年代兴起的"新数学"运动,对全球的数学教育界产生了巨大影响。根据结构主义的观念,数学本身就是一个有组织的、封闭的演绎体系;因而,数学教育也就意味着应该以体系的结构作为学习过程的指导方针,洞察数学的结构就成了数学教育的最重要的根本;从而提出了数学教育的目的就在于训练学生的逻辑演绎思维与公理化方法,必须以集合论与现代公理为基础,提供给学生一个完善的演绎理论体系。 人们通过数学教学的实践,发现了结构主义的片面性。根据数学发展的历史,无论是数学的概念,还是数学的运算与规则,都是由于现实世界的实际需要而形成的。数学不是符号的游戏,而是现实世界中人类经验的总结。数学来源于现实,因而也必须扎根于现实,并且应用于现实。数学如果脱离了那些丰富多彩而又错综复杂的背景材料,就将成为"无源之水,无本之木"。 另一方面,我们也认为数学是充满了各种关系的科学,通过与不同领域的多种形式的外部联系,不断地充实和丰富着数学的内容;与此同时,由于数学本身内在的联系,形成了自身独特的规律,进而发展成为严谨的形式逻辑演绎体系。因此,也应该让学生了解数学的整个体系一一充满着各种各样内在联系与外部关系的整体结构。 学习数学就意味着能够做数学:熟练地运用数学的语言去解决问题、探索论据并寻求证明,而最重要的活动则应该是从给定的具体情境中,识别或提出一个数学概念。所以,要想引入一个新概念,却缺少足够的具体事实作为基础,或者反复介绍一个概念,却没有具体的应用,这都无法使学生产生求知的冲动;过早地形式化不可能有效果,而过早的抽象化也会引起学生的抵触情绪;因为他们希望知道这究竟有什么用处,又为什么是关联的。 从具体情境中提取适当的概念,从观察到的实例进行概括,再通过归纳、类比,在直觉的基础上形成猜想,这是数学思维的方式。而要引导个体思维发展的最好方法,按照发生认识论的原则,就是追溯群体智力发展的自然顺序,当然不必再去重复错误。 因此,数学教学的内容一一为学生准备的数学一一应该是与现实密切联系的数学,能够在实际中得到应用的数学,即"现实的数学"。如果过于强调了数学的抽象形式, 忽视了生动的具体模型,过于集中于内在的逻辑联系,割断了与外部现实的密切关系,尤其是将数学与其他科学完全割裂开来,失掉了产生兴趣与刺激动机的最重要的源泉,必然会给数学教育带来极大的损害。 二、每个人的"数学现实"...