第十二章 平面直角坐标系小结 一、平面内点的坐标特征 1、各象限内点P(a ,b)的坐标特征: 第一象限:a>0,b>0;第二象限:a<0,b>0;第三象限:a<0,b<0;第四象限:a>0,b<0 (说明:一、三象限,横、纵坐标符号相同,即ab>0;二、四象限,横、纵坐标符号相反即ab<0。) 2、坐标轴上点P(a ,b)的坐标特征: x 轴上:a 为任意实数,b=0;y 轴上:b 为任意实数,a=0;坐标原点:a=0,b=0 (说明:若P(a ,b)在坐标轴上,则ab=0;反之,若ab=0,则P(a ,b)在坐标轴上。) 3、两坐标轴夹角平分线上点P(a ,b)的坐标特征: 一、三象限:a=b;二、四象限:a=-b 二、对称点的坐标特征 点P(a ,b)关于x 轴的对称点是(a ,-b); 关于y 轴的对称点是(-a ,b); 关于原点的对称点是(-a ,-b) 三、点到坐标轴的距离 点P(x ,y)到x 轴距离为∣y∣,到y 轴的距离为∣x∣ 四、(1)横坐标相同的两点所在直线垂直于x 轴,平行于y 轴; (2)纵坐标相同的两点所在直线垂直于y 轴,平行于x 轴。 五、点的平移坐标变化规律 坐标平面内,点P(x ,y)向右(或左)平移a 个单位后的对应点为(x+a,y)或(x-a,y);点P(x ,y)向上(或下)平移b 个单位后的对应点为(x,y+b)或(x,y-b)。 (说明:左右平移,横变纵不变,向右平移,横坐标增加,向左平移,横坐标减小;上下平移,纵变横不变,向上平移,纵坐标增加,向下平移,纵坐标减小。简记为“右加左减,上加下减”) 第十三章 一次函数 一、确定函数自变量的取值范围 1、自变量以整式形式出现,自变量的取值范围是全体实数; 2、自变量以分式形式出现,自变量的取值范围是使分母不为0 的数; 3、自变量以偶次方根形式出现,自变量的取值范围是使被开方数大于或等于0(即被开方数≥0)的数; 自变量以奇次方根形式出现,自变量的取值范围是全体实数。 4、自变量出现在零次幂或负整数次幂的底数中,自变量的取值范围是使底数不为0 的数。 (说明:(1)当一个函数解析式含有几种代数式时,自变量的取值范围是各个代数式中自变量取值范围的公共部分; (2)当函数解析式表示具有实际意义的函数时,自变量取值范围除应使函数解析式有意义外,还必须符合实际意义。) 二、一次函数 1 、一般形式:y=k x+b(k、b 为常数,k≠0),当 b=0 时,y=k x(k≠0),此时 y 是x 的正比例函数。 2 、一次函数的图...