电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学大一轮复习 第三章 三角函数、解三角形 课时达标22 解三角形应用举例试题VIP免费

高考数学大一轮复习 第三章 三角函数、解三角形 课时达标22 解三角形应用举例试题_第1页
高考数学大一轮复习 第三章 三角函数、解三角形 课时达标22 解三角形应用举例试题_第2页
高考数学大一轮复习 第三章 三角函数、解三角形 课时达标22 解三角形应用举例试题_第3页
课时达标第22讲解三角形应用举例[解密考纲]本考点考查利用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题,三种形式均可能出现,一般排在选择题、填空题的中间或最后位置或解答题靠前的位置,题目难度中等.一、选择题1.一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°方向直线航行,30分钟后到达B处.在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是(A)A.10海里B.10海里C.20海里D.20海里解析如图所示,易知,在△ABC中,AB=20海里,∠CAB=30°,∠ACB=45°,根据正弦定理得=,解得BC=10海里.故选A.2.要测量底部不能到达的东方明珠电视塔的高度,在黄浦江西岸选择甲、乙两观测点,在甲、乙两点分别测得塔顶的仰角分别为45°,30°,在水平面上测得电视塔与甲地连线及甲、乙两地连线所成的角为120°,甲、乙两地相距500m,则电视塔的高度是(D)A.100mB.400mC.200mD.500m解析由题意画出示意图,设塔高AB=hm,在Rt△ABC中,由已知得BC=hm,在Rt△ABD中,由已知得BD=hm,在△BCD中,由余弦定理BD2=BC2+CD2-2BC·CDcos∠BCD,得3h2=h2+5002+h·500,解得h=500m.3.长为3.5m的木棒AB斜靠在石堤旁,木棒的一端A在离堤足C处1.4m的地面上,另一端B在离堤足C处的2.8m的石堤上,石堤的倾斜角为α,则坡度值tanα=(A)A.B.C.D.解析由题意,可得在△ABC中,AB=3.5m,AC=1.4m,BC=2.8m,且∠α+∠ACB=π.由余弦定理,可得AB2=AC2+BC2-2×AC×BC×cos∠ACB,即3.52=1.42+2.82-2×1.4×2.8×cos(π-α),解得cosα=,所以sinα=,所以tanα==.4.如图所示,为测量一建筑物的高度,在地面上选取A,B两点,从A,B两点分别测得建筑物顶端的仰角为30°,45°,且A,B两点间的距离为60m,设该建筑物的高度为hm,则h=(A)A.30+30B.30+15C.15+30D.15+15解析在△PAB中,∠PAB=30°,∠APB=15°,AB=60,sin15°=sin(45°-30°)=sin45°cos30°-cos45°sin30°=×-×=.由正弦定理,得=,所以PB==30(+),故建筑物的高度h=PBsin45°=30(+)×=30+30.5.(2018·河南天一大联考)2017年9月16日05时,第19“”号台风杜苏芮的中心位于甲地,它以每小时30千米的速度向西偏北θ的方向移动,距台风中心t千米以内的地区都将受到影响,若16日08时到17日08时,距甲地正西方向900千米的乙地恰好受台风影响,则t和θ的值分别为(≈附:8.585)(A)A.858.5,60°B.858.5,30°C.717,60°D.717,30°解析如图,根据题意,3小时后台风中心距甲地90千米,27小时后台风中心距甲地810千米,乙地有24小时在台风范围内,根据余弦定理得t2=9002+902-2×90×900cosθ,t2=9002+8102-2×810×900cosθ,解得cosθ=,所以θ=60°,∴t2=9002+902-2×90×900cos60°=737100,∴t=858.5.故选A.6.如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60m,则河流的宽度BC=(C)A.240(-1)mB.180(-1)mC.120(-1)mD.30(+1)m解析 tan15°=tan(60°-45°)==2-,∴BC=60tan60°-60tan15°=120(-1)(m).故选C.二、填空题7.一艘船上午9:30在A处测得灯塔S在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午10:00到达B处,此时又测得灯塔S在它的北偏东75°处,且与它相距8nmile,此船的航速是__32__nmile/h.解析设航速为vnmile/h,在△ABS中,AB=v,BS=8nmile,∠BSA=45°.由正弦定理,得=,∴v=32nmile/h.8.江岸边有一炮台OA高30m,江中有两条船M,N,船与炮台底部O在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距__10__m.解析OM=AOtan45°=30(m),ON=AOtan30°=×30=10(m),在△MON中,由余弦定理,得MN===10(m).9.某同学骑电动车以24km/h的速度沿正北方向的公路行驶,在点A处测得电视塔S在电动车的北偏东30°方向上,15min后到点B处,测得电视塔S在电动车的北偏东75°方向上,则点B与电视塔的距离是__3__km.解析由题意...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

文章天下+ 关注
实名认证
内容提供者

各种文档应有尽有

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部