电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

苏教版八年级数学知识点总结

苏教版八年级数学知识点总结_第1页
1/10
苏教版八年级数学知识点总结_第2页
2/10
苏教版八年级数学知识点总结_第3页
3/10
苏教版 八年级 数学 知识点总结第一章 全等三角形 全等图形能够完全重合的图形叫做全等图形 全等三角形两个能完全重合的三角形叫做全等三角形当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角全等三角形的对应边相等、对应角相等 探究三角形全等的条件两边及其夹角分别相等的两个三角形全等(可以简写成“边角边”或“SAS”)两角及其夹边分别相等的两个三角形全等(可以简写成“角边角”或“ASA”)两角分别相等且其中一组等角的对边相等的两个三角形全等(可以简写成“角角边”或“AAS”)三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”)斜边和一条直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)第二章 轴对称图形 轴对称与轴对称图形把一个图形沿着某一条直线翻折,假如它能够与另一个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线叫做对称轴。把一个图形沿着某一条直线折叠,假如直线两旁的部分能够互相重合,那么成这个图形是轴对称图形,这条直线就是对称轴。 轴对称的性质垂直并且平分一条线段的直线,叫做这条线段的垂直平分线成轴对称的两个图形中,对应点的连线被对称轴垂直平分 设计轴对称图形 线段、角的轴对称性线段垂直平分线上的点到线段两端的距离相等到线段两端距离相等的点在线段的垂直平分线上角平分线上的点到角两边的距离相等角的内部到角两边距离相等的点在角的平分线上 等腰三角形的轴对称性等腰三角形的两底角相等(简称“等边对等角”)等腰三角形底边上的高线、中线及顶角平分线重合有两个角相等的三角形是等腰三角形(简称“等角对等边”)三边都相等的三角形叫做等边三角形或正三角形等边三角形的各角都等于 60º三个角都相等的三角形是等边三角形有一个角是 60º 的等腰三角形是等边三角形直角三角形斜边上的中线等于斜边的一半等腰梯形是轴对称图形,过两底中点的直线是它的对称轴等腰梯形在同一底上的两个角相等等腰梯形的对角线相等在同一底上的两个角相等的梯形是等腰梯形对角线相等的梯形是等腰梯形第三章 勾股定理 勾股定理直角三角形两条直角边的平方和等于斜边的平方 勾股定理的逆定理假如三角形的三边长分别为 a、b、c,且,那么这个三角形是直角三角形 勾股定理的简单运用第四章实数 平方根假如,那么 x 叫做 a 的平方根,也称为二次方根。...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

苏教版八年级数学知识点总结

一二三四传媒+ 关注
实名认证
内容提供者

大量资料供您选择,没有合适的可以联系小二。

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部