高考数学常用公式及结论 200 条 湖北省黄石二中 杨志明1. 元素与集合的关系,.2.德摩根公式 .3.包含关系4.容斥原理. 5.集合的子集个数共有 个;真子集有–1 个;非空子集有 –1个;非空的真子集有–2 个.6.二次函数的解析式的三种形式(1)一般式;(2)顶点式;(3)零点式.7.解连不等式常有以下转化形式.8.方程在上有且只有一个实根,与不等价,前者是后者的一个必要而不是充分条件.特别地, 方程有且只有一个实根在内 , 等 价 于, 或且, 或且.9.闭区间上的二次函数的最值 二次函数在闭区间上的最值只能在处及区间的两端点处取得,具体如下:(1)当 a>0 时,若,则;,,.(2) 当a<0时 , 若, 则, 若,则,.10.一元二次方程的实根分布依据:若,则方程在区间内至少有一个实根 . 设,则(1)方程在区间内有根的充要条件为或;(2)方程在区间内有根的充要条件为或或或;(3)方程在区间内有根的充要条件为或 .11.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间的子区间 (形如,,不同)上含参数的二次不等式( 为参数)恒成立的充要条件是.(2)在给定区间的子区间上含参数的二次不等式( 为参数)恒成立的充要条件是.(3)恒成立的充要条件是或.12.真值表 pq非pp或qp且q真真假真真真假假真假假真真真假假假真假假 13.常见结论的否定形式原结论反设词原结论反设词是不是至少有一个一个也没有都是不都是至多有一个至少有两个大于不大于至少有个至多有()个小于不小于至多有个至少有()个对所有,成立存在某,不成立或且对任何,不成立存在某,成立且或14.四种命题的相互关系原命题 互逆 逆命题若p则q 若q则p 互 互 互 为 为 互 否 否 逆 逆 否 否否命题 逆否命题 若非p则非q 互逆 若非q则非p15.充要条件 (1)充分条件:若,则是充分条件.(2)必要条件:若,则是必要条件.(3)充要条件:若,且,则是充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.16.函数的单调性(1)设那么上是增函数;上是减函数.(2)设函数在某个区间内可导,如果,则为增函数;如果,则为减函数.17.如果函数和都是减函数,则在公共定义域内,和函数也是减函数; 如果函数和在其对应的定义域上都是减函数 ,则复合函数是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于 y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数...