【创新设计】(全国通用)2017版高考数学一轮复习第九章平面解析几何第8讲曲线与方程练习理新人教A版基础巩固题组(建议用时:30分钟)一、选择题1.方程(2x+3y-1)(-1)=0表示的曲线是()A.两条直线B.两条射线C.两条线段D.一条直线和一条射线解析原方程可化为或-1=0,即2x+3y-1=0(x≥3)或x=4,故原方程表示的曲线是一条直线和一条射线.答案D2.已知点A(1,0),直线l:y=2x-4,点R是直线l上的一点,若RA=AP,则点P的轨迹方程为()A.y=-2xB.y=2xC.y=2x-8D.y=2x+4解析设P(x,y),R(x1,y1),由RA=AP知,点A是线段RP的中点,∴即 点R(x1,y1)在直线y=2x-4上,∴y1=2x1-4,∴-y=2(2-x)-4,即y=2x.答案B3.设点A为圆(x-1)2+y2=1上的动点,PA是圆的切线,且|PA|=1,则P点的轨迹方程是()A.y2=2xB.(x-1)2+y2=4C.y2=-2xD.(x-1)2+y2=2解析如图,设P(x,y),圆心为M(1,0),连接MA,则MA⊥PA,且|MA|=1,又 |PA|=1,∴|PM|==,即|PM|2=2,∴(x-1)2+y2=2.答案D4.已知点F(0,1),直线l:y=-1,P为平面上的动点,过点P作直线l的垂线,垂足为Q,且QP·QF=FP·FQ,则动点P的轨迹C的方程为()A.x2=4yB.y2=3xC.x2=2yD.y2=4x解析设点P(x,y),则Q(x,-1).因为QP·QF=FP·FQ,所以(0,y+1)·(-x,2)=(x,y-1)·(x,-2),即2(y+1)=x2-2(y-1),整理得x2=4y.答案A5.平面直角坐标系中,已知两点A(3,1),B(-1,3),若点C满足OC=λ1OA+λ2OB(O为原点),其中λ1,λ2∈R,且λ1+λ2=1,则点C的轨迹是()A.直线B.椭圆C.圆D.双曲线解析设C(x,y),因为OC=λ1OA+λ2OB,所以(x,y)=λ1(3,1)+λ2(-1,3),即解得又λ1+λ2=1,所以+=1,即x+2y=5,所以点C的轨迹为直线,故选A.答案A二、填空题6.已知两定点A(-2,0),B(1,0),如果动点P满足|PA|=2|PB|,则点P的轨迹所包围的图形的面积为__________.解析设P(x,y),由|PA|=2|PB|,得=2,∴3x2+3y2-12x=0,即x2+y2-4x=0.∴P的轨迹为以(2,0)为圆心,半径为2的圆.即轨迹所包围的面积等于4π.答案4π7.动点P(x,y)到定点A(3,4)的距离比P到x轴的距离多一个单位长度,则动点P的轨迹方程为________.解析由题意知动点P满足|PA|=|y|+1,即=|y|+1,当y>0时,整理得x2-6x-10y+24=0;当y≤0时,整理得x2-6x-6y+24=0,变形为(x-3)2+15+6y,此方程无轨迹.答案x2-6x-10y+24=0(y>0)8.在△ABC中,|BC|=4,△ABC的内切圆切BC于D点,且|BD|-|CD|=2,则顶点A的轨迹方程为________.解析以BC的中点为原点,中垂线为y轴建立如图所示的坐标系,E、F分别为两个切点.则|BE|=|BD|,|CD|=|CF|,|AE|=|AF|.∴|AB|-|AC|=2<|BC|=4,∴点A的轨迹为以B,C的焦点的双曲线的右支(y≠0)且a=,c=2,∴b=,∴轨迹方程为-=1(x>).答案-=1(x>)三、解答题9.(2016·烟台模拟)已知点C(1,0),点A,B是⊙O:x2+y2=9上任意两个不同的点,且满足AC·BC=0,设P为弦AB的中点.(1)求点P的轨迹T的方程;(2)试探究在轨迹T上是否存在这样的点:它到直线x=-1的距离恰好等于到点C的距离?若存在,求出这样的点的坐标;若不存在,说明理由.解(1)连接CP,OP,由AC·BC=0,知AC⊥BC,∴|CP|=|AP|=|BP|=|AB|,由垂径定理知|OP|2+|AP|2=|OA|2,即|OP|2+|CP|2=9,设点P(x,y),有(x2+y2)+[(x-1)2+y2]=9,化简,得x2-x+y2=4.(2)存在.根据抛物线的定义,到直线x=-1的距离等于到点C(1,0)的距离的点都在抛物线y2=2px(p>0)上,其中=1.∴p=2,故抛物线方程为y2=4x,由方程组得x2+3x-4=0,解得x1=1,x2=-4,由x≥0,故取x=1,此时y=±2.故满足条件的点存在,其坐标为(1,-2)和(1,2).10.如图,动圆C1:x2+y2=t2,1<t<3,与椭圆C2:+y2=1相交于A,B,C,D四点.点A1,A2分别为C2的左,右顶点.求直线AA1与直线A2B交点M的轨迹方程.解由椭圆C2:+y2=1,知A1(-3,0),A2(3,0).设点A的坐标为(x0,y0);由曲线的对称性,得B(x0,-y0),设点M的坐标为(x,y),直线AA1的方程为y=(x+3).①直线A2B的方程为y=(x-3).②由①②相乘得y2=(x2-9).③又点A(x0,y0...