专题12直线与圆位置关系【母题原题1】【2018江苏,理12】在平面直角坐标系中,A为直线上在第一象限内的点,,以AB为直径的圆C与直线l交于另一点D.若,则点A的横坐标为________.【答案】3点睛:以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法.【母题原题2】【2017江苏,理13】在平面直角坐标系中,点在圆上,若则点的横坐标的取值范围是▲.【答案】【考点】直线与圆,线性规划【名师点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求横坐标或纵坐标、直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.【母题原题3】【2016江苏,理18】如图,在平面直角坐标系中,已知以为圆心的圆:及其上一点A(2,4).(1)设圆N与x轴相切,与圆外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆相交于B,C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆上的两点P和Q,使得,求实数t的取值范围.【答案】(1)(2)(3)【解析】(3)设【考点】直线方程、圆的方程、直线与直线、直线与圆、圆与圆的位置关系、平面向量的运算【名师点睛】直线与圆中的三个定理:切线的性质定理,切线长定理,垂径定理;两个公式:点到直线距离公式及弦长公式,其核心都是转化到与圆心、半径的关系上,这是解决直线与圆的根本思路.对于多元问题,也可先确定主元,如本题以为主元,揭示在两个圆上运动,从而转化为两个圆有交点这一位置关系,这也是解决直线与圆问题的一个思路,即将问题转化为直线与圆、圆与圆的位置关系问题.【命题意图】直线与圆是高中数学的C级知识点,是高中数学中数形结合思想的典型体现.【命题规律】近年来,高考对直线与圆的命题,既充分体现自身知识结构体系的命题形式多样化,又保持与函数或不等式或轨迹相结合的命题思路,呈现出“综合应用,融会贯通”的特色,充分彰显直线与圆的交汇价值.【答题模板】解答本类题目,以2016年试题为例,一般考虑如下三步:第一步:利用待定系数法求圆标准方程第二步:根据圆中垂径定理揭示等量关系第三步:利用圆与圆位置关系、坐标表示逐层揭示刻画多元关系【方法总结】1.以动点轨迹为圆考查直线与圆、圆与圆位置关系,突出考查方程思想和解析法2.以圆中直角三角形建立函数关系式或方程或不等式,注重考查圆相关几何性质.3.利用数形结合揭示与刻画直线与圆、圆与圆位置关系,重点考查直线与圆的综合应用以及数形结合的数学思想.1.【江苏省南京师大附中2018届高三高考考前模拟考试数学试题】已知直线x-y+b=0与圆交于不同的两点A,B.若O是坐标原点,且,则实数b的取值范围是______.【答案】点睛:本题考查向量知识的运用,考查直线与圆的位置关系,考查学生的计算能力,能正确的转化向量的不等式是解题关键,属于中档题.2.【江苏省苏州市第五中学校2018届高三上学期期初考试数学(文)试题】已知,若直线上总存在点,使得过点的的两条切线互相垂直,则实数的取值范围是_____.【答案】【解析】【分析】设两个切点分别为A、B,则由题意可得四边形PAOB为正方形,根据圆心O到直线的距离,进行求解即可得的范围.【详解】圆心为,半径,设两个切点分别为A、B,则由题意可得四边形PAOB为正方形,故有,圆心O到直线的距离,即,即,解得或.故答案为:.【点睛】本题主要考查直线和圆相交的性质,点到直线的距离公式的应用,体现了转化的数学思想,属于中档题.3.【江苏省南京市2018届高三第三次模拟考试数学试题】在平面直角坐标系中,圆与轴的两个交点分别为,其中在的右侧,以为直径的圆记为圆,过点作直线与圆,圆分别交于两点.若为线段的中点,则直线的方程为_________.【答案】点睛:(1)本题主要考查直线的方程,直线与圆的位置关系,要在考查学生对这些基础知识的掌握能力、基本的运算能力和分析推理能力.(2)涉及直线与...