7.2认识函数(2)【教学目标】知识目标:会根据实际问题构建数学模型并列出函数解析式;能力目标:掌握根据函数自变量的值求对应的函数值,或是根据函数值求对应自变量的值;会在简单的情况下根据实际背景对自变量的限制求出自变量的取值范围.情感目标:使学生在探索、归纳求函数自变量取值范围的过程中,增强数学建模意识;【教学重点与难点】教学重点:求函数解析式是重点.教学难点:根据实际问题求自变量的取值范围并化归为解不等式(组)学生不易理解.【教学过程】一、创设情境问题1填写如图所示的加法表,然后把所有填有10的格子涂黑,看看你能发现什么?如果把这些涂黑的格子横向的加数用x表示,纵向的加数用y表示,你能写出y与x的函数关系式吗?解如图能发现涂黑的格子成一条直线.函数关系式为:y=10-x.问题2试写出等腰三角形中顶角的度数y与底角的度数x之间的函数关系式.解y与x的函数关系式:y=180-2x.问题3如图,等腰直角△ABC的直角边长与正方形MNPQ的边长均为10cm,AC与MN在同一直线上,开始时A点与M点重合,让△ABC向右运动,最后A点与N点重合.试写出重叠部分面积ycm2与MA长度xcm之间的函数关系式.____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________解y与x的函数关系式:.二、探究归纳思考(1)在上面问题中所出现的各个函数中,自变量的取值有限制吗?如果有,写出它的取值范围.(2)在上面问题1中,当涂黑的格子横向的加数为3时,纵向的加数是多少?当纵向的加数为6时,横向的加数是多少?分析问题1,观察加法表中涂黑的格子的横向的加数的数值范围.问题2,因为三角形内角和是180°所以等腰三角形的底角的度数x不可能大于或等于90°.问题3,开始时A点与M点重合,MA长度为0cm,随着△ABC不断向右运动过程中,MA长度逐渐增长,最后A点与N点重合时,MA长度达到10cm.解(1)问题1,自变量x的取值范围是:1≤x≤9;问题2,自变量x的取值范围是:0<x<90;问题3,自变量x的取值范围是:0≤x≤10.(2)当涂黑的格子横向的加数为3时,纵向的加数是7;当纵向的加数为6时,横向的加数是4.上面例子中的函数,都是利用解析法表示的,又例如:s=60t,S=πR2.在用解析式表示函数时,要考虑自变量的取值必须使解析式有意义.在确定函数中自变量的取值范围时,如果遇到实际问题,必须使实际问题有意义.例如,函数解析式S=πR2中自变量R的取值范围是全体实数,但如果式子表示圆面积S与圆半径R的关系,那么自变量R的取值范围就应该是R>0.三、实践应用例1求下列函数中自变量x的取值范围:(1)y=3x-1;(2)y=2x2+7;(3)(4).分析用数学式子表示的函数,一般来说,自变量只能取使式子有意义的值.例如,在(1),(2)中,x取任意实数,3x-1与2x2+7都...