反比例函数三维目标1.经历从实际问题抽象出反比例函数的探索过程,发展学生的抽象思维能力。2.理解反比例函数的概念,会列出实际问题的反比例函数关系式。重点目标理解反比例函数的概念,会列出实际问题的反比例函数关系式。难点目标理解反比例函数的概念,会列出实际问题的反比例函数关系式。导入示标1.什么是正比例函数?2.复习小学已学过的反比例关系,例如(1)当路程s一定,时间t与速度v成反比例,即vt=s(s是常数)(2)当矩形面积一定时,长a和宽b成反比例,即ab=s(s是常数)目标三导学做思一:你能得到反比例函数的定义吗?阅读教材54—55页并完成问题1和问题2.导学:1.以上(1)和(2)这两个函数有什么共同点?导做:让学生观察、分析后回答:这两个函数都具有y=(k是常数)的形式)。2.自变量的取值范围有什么限制?导思:1.反比例函数定义:形如y=(k是常数,k≠0)的函数叫做反比例函数。2.反比例函数常有三种表达形式(1)_____________(2)_____________(3)_____________3.反比例函数与正比例函数定义相比较,本质上,正比例函数y=kx,即=k,k是常数,且k≠0;反比例函数y=,则xy=k,k是常数,且k≠0。可利用定义判断两个量x和y满足哪一种比例关系,学做思二:你能判断出反比例函数吗?例1:下列函数中,哪些是反比例函数(x为自变量)?说出反比例函数的比例系数:y=xy=-x=-5y导学:函数y=(k是常数,k≠0)叫做反比例函数。若一个函数可写成y=(k是常数,k≠0)的形式,则它是反比例函数;若y与x成反比例,则y可以写成y=(k≠0,k是常数),导做:独立自主完成,小组讨论交流。导思:正确区分反比例函数与正比例函数关系。达标检测1.P56页练习1。2.补充:当m为何值时,函数y=是反比例函数,并求出其函数的解析式。反思总结课后作业P59页习题17、41wWw.xKb1.coM