第十八讲多边形与平行四边形教学目标1.了解多边形的有关概念,掌握多边形内角和与外角和公式.2.理解平行四边形的概念,掌握平行四边形的性质定理和判定定理,会综合运用它们进行有关的计算与推理证明;了解两条平行线间距离的意义,能度量两条平行线间的距离.3.灵活运用转化的数学思想将四边形或平行四边形问题转化成三角形的问题进行解决.教学重点与难点重点:能用平行四边形的性质和判定进行有关的计算和证明.难点:运用平行四边形的性质和判定进行有关的计算和证明;灵活运用转化思想将四边形或平行四边形问题转化成三角形的问题进行解决.课前准备:教师准备:导学案、多媒体课件.学生准备:尝试完成导学案上的“课前热身”和“知识梳理”.教学过程:一、课前热身,回顾知识1.如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A.13B.14C.15D.162.下列选项中的四边形只有一个为平行四边形,根据图中所给的边长长度及角度,判断哪一个为平行四边形?()A.B.C.D.3.如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是()A.AB∥CD,AD∥BCB.OA=OC,OB=ODC.AD=BC,AB∥CDD.AB=CD,AD=BC3题图4题图4.如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件不能是()A.AE=CFB.BE=FDC.BF=DED.∠1=∠25.如图,在平行四边形ABCD中,对角线AC、BD相交成的锐角为α,若AC=a,BD=b,则平行四边形ABCD的面积是()A.absinαB.absinαC.abcosαD.abcosα5题图6题图6.将四根木条钉成的长方形木框变形为平行四边形ABCD的形状,并使其面积为长方形面积的一半(木条宽度忽略不计),则这个平行四边形的最小内角为度.7.如图,平行四边形ABCD的对角线AC、BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO的周长是.8.如图,在平行四边形ABCD中,BC=10,sinB=,AC=BC,则平行四边形ABCD的面积是.7题图8题图9题图9.如图,在四边形ABCD中,对角线AC、BD交于点O,AD∥BC,请添加一个条件:,使四边形ABCD为平行四边形(不添加任何辅助线).10.如图,在平行四边形ABCD中,DE平分∠ADC,AD=6,BE=2,则平行四边形ABCD的周长是.11.在四边形ABCD中,(1)AB∥CD,(2)AD∥BC,(3)AB=CD,(4)AD=BC,在这四个条件中任选两个作为已知条件,能判定四边形ABCD是平行四边形的概率是.12.如图,在平行四边形ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是.(把所有正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.处理方式:一生用展台展示自己的导学案,其余学生互查并纠正错误,教师用多媒体展示答案.1.B;2.B;3.C;4.A;5.A;6.30度;7.9;8.18;9.AD=BC(答案不唯一);10.20;11.;12.①②④.设计意图:在学生展示及其相互纠错的过程中,让学生进一步巩固本节学习的知识点,把握复习重点,如有遗忘,借用课本或同学间交流进行补充.这样做既可以节省课上时间,也能加深学生对知识网络的理解.二、揭示目标,知识梳理同学们,在第四单元我们复习了几何的初步与三角形等知识,大家对线段与角、相交线与平行线、全等三角形、等腰三角形、直角三角形以及解直角三角形等知识综合应用,有了更深刻的认识和理解.在此基础上,今天我们一起走进第五单元四边形与平行四边形的复习,首先我们来复习第十八讲多边形与平行四边形.下面我们先看一看中考要求:(多媒体展示)1.了解多边形的有关概念,掌握多边形内角和与外角和公式.2.理解平行四边形的概念,掌握平行四边形的性质定理和判定定理,会综合运用它们进行有关的计算与推理证明;了解两条平行线间距离的意义,能度量两条平行线间的距离.3.灵活运用转化的数学思想将四边形或平行四边形问题转化成三角形的问题进行解决.设计意图:站在中考的高度,让学生明确本考点的考试要求,使学生在复习过程中把握复习的方向,明确复习的重点,这样既引起了学生的重视,又能给学生起到很好的导航作用.请同学...