24.3正多边形和圆(第1课时)教学设计教学目标:【知识与技能】了解正多边形和圆的有关概念;理解并掌握正多边形半径和边长、边心距、中心角之间的关系,会应用多边形和圆的有关知识画多边形。【过程与方法】通过正多边形定义教学,培养学生归纳能力;通过正多边形与圆关系定理的教学培养学生观察、猜想、推理、迁移能力。【情感、态度与价值观】学生经历观察、发现、探究等数学活动,感受到数学来源于生活,又服务于生活,体会到事物之间是相互联系,相互作用的。【重点】讲清正多边形和圆中心正多边形半径、中心角、弦心距、边长之间的关系【难点】通过例题使学生理解四者:正多边形半径、中心角、弦心距、边长之间的关系教学过程设计一、创设情景,导入新课教师展示课件上的图片,学生观察图案,找出其中的正多边形。二、自主探究1.出示问题1:将一个圆五等分,依次连接各分点得到一个五边形,这五边形一定是正五边形吗?如果是请你证明这个结论。2.问题2:如果将圆n等分,依次连接各分点得到一个n边形,这n边形一定是正n边形吗?3.归纳概念:正多边形的中心,半径,中心角,边心距等概念,结合图形理解。三、尝试应用1.例题讲解例题1有一个亭子(如图)它的地基是半径为4m的正六边形,求地基的周长和面积(精确到0.1m2).问题:正n边形的一个内角的度数是多少?中心角呢?正多边形的中心角和外角的大小有什么关系?(正多边形的每一个内角都等于,每一个中心角和外角都等于)2.课堂练习(1)完成下表中有关正多边形的计算:正多边形边数内角中心角半径边长边心距周长面积460°516(2)求出半径为2的圆内接正三角形的边长、边心距和面积。方法点拨:如果正n边形的变数确定,已知它的边长、周长、半径、边心距、面积中的任意一项,都可以求出其他各项。四.1.小结反思:学完这节课你有哪些收获?2.思考题问题1:正n边形的一个内角的度数是多少?中心角呢?正多边形的中心角与外角的大小有什么关系?问题2:正n边形的半径,边心距,边长又有什么关系?