第17章勾股定理复习课由形到数本章知识框图:实际问题(直角三角形边长计算)勾股定理勾股定理的逆定理实际问题(判定直角三角形)由数到形互逆定理1.勾股定理直角三角形两直角边a、b的平方和,等于斜边c的平方。222cba2.勾股定理的逆定理如果三角形三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形。满足a2+b2=c2的三个正整数,称为勾股数.熟记常见的勾股数(如3、4、5)3.勾股数4.互逆命题与互逆定理的概念互逆命题互逆定理互逆定理:如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理叫做互逆定理,其中一个叫做另一个的逆定理.互逆命题:两个命题的题设和结论恰好相反,那么这两个命题叫做互逆命题.如果其中一个叫做原命题,则另一个叫做它的逆命题。勾股定理勾股定理的逆定理题设在RtABC△中,C=90∠0在△ABC中,三边a,b,c满足a2+b2=c2结论a2+b2=c2∠C=900作用1.用勾股定理进行计算2.证明与平方有关的问题3.解决实际问题1.判断某三角形是否为直角三角形2.解决实际问题联系1.两个定理都与“三角形的三边关系a2+b2=c2”有关;2.都与直角三角形有关;3.都是数形结合思想的体现。一、分类思想二、方程思想三、展开思想勾股定理的应用中体现的数学思想2.三角形ABC中,AB=10,AC=17,BC边上的高线AD=8,求BC∟D∟DABC1.已知:直角三角形的三边长分别是3,4,X,则X2=25或7ABC1017817108一、分类思想分类思想1.直角三角形中,已知两边长,求第三边时,应分类讨论。2.当已知条件中没有给出图形时,应认真读句画图,避免遗漏另一种情况。1、小强想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,你能帮他算出来吗?ABC5米(x+1)米x米二、方程思想2、如图,一块直角三角形的纸片,两直角边AC=6㎝,BC=8㎝。现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,求CD的长.ACBE第8题图Dx68-x468x方程思想直角三角形中,当无法已知两边求第三边时,应采用间接求法:灵活地寻找题中的等量关系,利用勾股定理列方程。1、如图是一个三级台阶,它的每一级的长宽和高分别为20dm、3dm、2dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是多少?2032AB20232323ABC三、展开思想2、如图,长方体的长为15cm,宽为10cm,高为20cm,点B离点C5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?1020BAC155BAC1551020B5B51020ACEFE1020ACFAECB2015105(1)(2)(3)1.几何体的表面路径最短的问题,一般考虑将侧面展开。2.利用两点之间线段最短,及勾股定理求解。展开思想