20.1数据的集中趋势教学目标1.通过实例经历加权平均数、中位数、众数等概念的形成过程,知道加权平均数、中位数、众数的意义,会求一组数据的加权平均数、中位数和众数.2.了解平均数、中位数、众数之间的差异.3.能灵活应用这三个数据代表解决实际问题,感受数学与人类生活的密切联系.教学重点1.加权平均数、中位数、众数的概念、计算和确定方法.2.运用加权平均数、中位数和众数解决实际问题.教学难点1.对权意义的理解.2.了解平均数、中位数、众数之间的差异.平均数问题1一家公司打算招聘一名英文翻译.对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们的各项成绩(百分制)如下表所示.应试者听说读写甲85788573乙73808283(1)如果这家公司想招一名综合能力较强的翻译,计算两名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?(2)如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2∶1∶3∶4的比确定,计算两名应试者的平均成绩(百分制).从他们的成绩看,应该录取谁?对于问题(1),根据平均数公式,甲的平均成绩为,25.80473857885乙的平均成绩为.5.79483828073因为甲的平均成绩比乙高,所以应该录取甲.对于问题(2),听、说、读、写成绩按照2∶1∶3∶4的比确定,这说明各项成绩的“重要程度”有所不同,读、写的成绩比听、说的成绩更加“重要”.因此,甲的平均成绩为,5.794312473385178285乙的平均成绩为.4.804312483382180273因为乙的平均成绩比甲高,所以应该录取乙.上述问题(1)是利用平均数的公式计算平均成绩,其中的每个数据被认为同等重要.而问题(2)是根据实际需要对不同类型的数据赋予与其重要程度相应的比重,其中的2,1,3,4分别称为听、说、读、写四项成绩的权,相应的平均数79.5,80.4分别称为甲和乙的听、说、读、写四项成绩的加权平均数.一般地,若n个数x1,x2,…,xn的权分别是w1,w2,…,wn,则nnnwwwwxwxwx212211叫做这n个数的加权平均数.思考如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按照3∶3∶2∶2的比确定,那么甲、乙两人谁将被录取?与上述问题中的(1)(2)相比较,你能体会到权的作用吗?例1一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分.各项成绩均按百分制计,然后再按演讲内容占50%、演讲能力占40%、演讲效果占10%,计算选手的综合成绩(百分制).进入决赛的前两名选手的单项成绩如下表所示,请确定两人的名次.选手演讲内容演讲能力演讲效果A859595B958595分析:这个问题可以看成是求两名选手三项成绩的加权平均数,50%,40%,10%说明演讲内容、演讲能力、演讲效果三项成绩在总成绩中的重要程度,是三项成绩的权.解:选手A的最后得分是选手B的最后得分是由上可知选手B获得第一名,选手A获得第二名.,90104050109540955085000000000000.91104050109540855095000000000000练习答案1.(1)甲将被录取;(2)乙将被录取.2.小桐这学期的体育成绩是88.5分.在求n个数的平均数时,如果x1出现f1次,x2出现f2次,…xk出现fk次(这里f1+f2+…+fk=n),那么这n个数的平均数nfxfxfxxkk2211也叫做x1,x2,…,xk这k个数的加权平均数,其中f1,f2,…,fk分别叫做x1,x2,…,xk的权.例2某跳水队为了解运动员的年龄情况,作了一次年龄调查,结果如下:13岁8人,14岁16人,15岁24人,16岁2人.求这个跳水队运动员的平均年龄(结果取整数).解:这个跳水队运动员的平均年龄为22416821624151614813x≈14(岁).探究为了解5路公共汽车的运营情况,公交部门统计了某天5路公共汽车每个运行班次的载客量,得到下表.这天5路公共汽车平均每班的载客量是多少(结果取整数)?载客量/人组中值频数(班次)1≤x<2111321≤x<4131541≤x<61512061≤x<81712281≤x<1019118101≤x<12111115根据上面的频数分布表求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组的频数看作...