1.3.1有理数的加法(一)教学目标知识技能:1、通过实例,了解有理数加法的意义,掌握有理数加法法则,并能运用法则进行计算;2、在有理数加法法则的教学过程中,培养观察、比较、归纳及运能力。数学思考:1、正确地进行有理数的加法运算;2、用数形结合的思想方法得出有理数加法法则。解决问题:能运用有理数加法解决实际问题。情感态度:通过师生活动、学生自我探究,让学生充分参与到数学学习的过程中来。教学重点和难点重点:了解有理数加法的意义,会根据有理数加法法则进行有理数加法计算;难点:异号两数如何相加的法则。教学过程【情景设计】我们来看一个大家熟悉的实际问题:在本章引言中,把收入记作正数,支出记作负数,在“结余”时,需要计算8.5+(-4.5),4+(-5.2)等。这里,就需要用到正数与负数的加法。下面,我们利用数轴一起来讨论有理数的加法规律。一、正数+正数,负数+负数一个物体作左右方向的运动,我们规定向左为负,向右为正.1)如果物体先向右运动5米,再向右运动3米,那么两次运动的最后结果是向右运动了8米。写出算是就是5+3=8。这个问题用数轴表示就是如图所示:2)如果物体先向左运动5米,再向左运动3米,两次运动的最后结果是向左运动了8米。写出算是就是(-5)+(-3)=-8.1/45O038图略。从1)2)可以看出:符号相同的两个数相加,结果的符号不变,绝对值相加.二、负数+正数3)如果物体先向左运动3米,再向右运动5米,那么两次运动的最后结果是向右运动了2米。写成算式就是(—3)+5=2。4)如果物体先向右运动3米,再向左运动5米,那么两次运动的最后结果是向左运动了2米。写成算式就是3+(-5)=-2。从3)4)可以看出:符号相反的两个数相加,结果的符号与绝对值较大的加数的符号相同,并用较大的绝对值减去较小的绝对值。探究活动如果物体先向右运动5米,再向左运动5米,那么两次运动的最后结果是仍在起点处。写成算式就是5+(-5)=0。如果物体第一秒向右(或向左)运动5米,第二秒原地不动,两秒后物体从起点向右(或向左)运动了5米。写成算式就是5+0=5或(—5)+0=—5。你能从上面算式中发现什么结论?三、有理数加法法则1.同号的两数相加,取相同的符号,并把绝对值相加.2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得零.3.一个数同0相加,仍得这个数。四、例题例1计算(1)(-3)+(-9);(2)(-4.7)+3.9.分析:解此题要利用有理数的加法法则.解:(1)(-3)+(-9)=-(3+9)=-12:(2)(-4.7)+3.9=-(4.7-3.9)=-0.8.五、课堂练习1.填空:2/4注意法则的应用,尤其是和的符号的确定!(1)(-3)+(-5)=;(2)3+(-5)=;(3)5+(-3)=;(4)7+(-7)=;(5)8+(-1)=;(6)(-8)+1=;(7)(-6)+0=;(8)0+(-2)=;2.计算:(1)(-13)+(-18);(2)20+(-14);(3)1.7+2.8;(4)2.3+(-3.1);(5)(-13)+(-23);(6)112+(-1.5);(7)(-3.04)+6;(8)12+(-23).3.想一想,两个数的和一定大于每个加数吗?请你举例说明.4.第18页练习1、2、3、4。课堂练习答案1.(1)-8;(2)-2;(3)2;(4)0;(5)7;(6)-7;(7)-6;(8)-2.2.(1)-31;(2)7;(3)4.5;(4)-0.7;(5)-1;(6)0;(7)2.96;(8)-16.3.不一定,例如两个负数的和小于这两个加数.课堂小结1、这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法则.今后我们经常要用类似的思想方法研究其他问题。2、应用有理数加法法则进行计算时,要同时注意确定“和”的符号,计算“和”的绝对值两件事。课外作业:第25页1题.课外选做题1.判断题:(1)两个负数的和一定是负数;3/4(2)绝对值相等的两个数的和等于零;(3)若两个有理数相加时的和为负数,这两个有理数一定都是负数;(4)若两个有理数相加时的和为正数,这两个有理数一定都是正数.2.当a=-1.6,b=2.4时,求a+b和a+(-b)的值.3.已知│a│=8,│b│=2.(1)当a、b同号时,求a+b的值;(2)当a、b异号时,求a+b的值.课外选做题答案1.(1)对;(2)错;(3)错;(4)错.2.a+b和a+(-b)的值分别为0.8、-4.3.(1)当a、b同号时,a+b的值为10或-10;4/4