圆锥曲线1316.已知椭圆C:+=1(a>b>0)的左.右焦点为F1、F2,离心率为e.直线l:y=ex+a与x轴.y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设=λ.(Ⅰ)证明:λ=1-e2;(Ⅱ)若,△PF1F2的周长为6;写出椭圆C的方程;(Ⅲ)确定λ的值,使得△PF1F2是等腰三角形.证法二:因为A、B分别是直线l:与x轴、y轴的交点,所以A、B的坐标分别是设M的坐标是所以因为点M在椭圆上,所以即解得(Ⅱ)当时,,所以由△MF1F2的周长为6,得所以椭圆方程为(Ⅲ)解法一:因为PF1⊥l,所以∠PF1F2=90°+∠BAF1为钝角,要使△PF1F2为等腰三角形,必有|PF1|=|F1F2|,即设点F1到l的距离为d,由得所以即当△PF1F2为等腰三角形.17.已知椭圆C:+=1(a>b>0)的左.右焦点为F1、F2,离心率为e.直线l:y=ex+a与x轴.y轴分别交于点A、B,M是直线l与椭圆C的一个公共点,P是点F1关于直线l的对称点,设=λ.(Ⅰ)证明:λ=1-e2;(Ⅱ)确定λ的值,使得△PF1F2是等腰三角形.(Ⅰ)证法一:因为A、B分别是直线l:与x轴、y轴的交点,所以A、B的坐标分别是.所以点M的坐标是().由即(Ⅱ)解法一:因为PF1⊥l,所以∠PF1F2=90°+∠BAF1为钝角,要使△PF1F2为等腰三角形,必有|PF1|=|F1F2|,即设点F1到l的距离为d,由得所以即当△PF1F2为等腰三角形.解法二:因为PF1⊥l,所以∠PF1F2=90°+∠BAF1为钝角,要使△PF1F2为等腰三角形,必有|PF1|=|F1F2|,设点P的坐标是,则由|PF1|=|F1F2|得两边同时除以4a2,化简得从而于是.即当时,△PF1F2为等腰三角形.18.设A、B是椭圆上的两点,点N(1,3)是线段AB的中点,线段AB的垂直平分线与椭圆相交于C、D两点.(Ⅰ)确定的取值范围,并求直线AB的方程;(Ⅱ)试判断是否存在这样的,使得A、B、C、D四点在同一个圆上?并说明理由.解法2:设依题意,(II)解法1:代入椭圆方程,整理得③③的两根,于是由弦长公式可得④故当时,A、B、C、D四点均在以M为圆心,为半径的圆上.(注:上述解法中最后一步可按如下解法获得:A、B、C、D共圆△ACD为直角三角形,A为直角⑧由⑥式知,⑧式左边=由④和⑦知,⑧式右边=∴⑧式成立,即A、B、C、D四点共圆