3.2.1古典概型的特征和概率计算公式3.2.2建立概率模型一、选择题1.已知集合A={-9,-7,-5,-3,-1,0,2,4,6,8},从集合A中选取不相同的两个数,构成平面直角坐标系上的点,观察点的位置,则事件“点落在x轴上”包含的基本事件共有________个.()A.7B.8C.9D.10答案C解析符合要求的基本事件是(-9,0),(-7,0),(-5,0),(-3,0),(-1,0),(2,0),(4,0),(6,0),(8,0).2.下列是古典概型的是()A.任意抛掷两枚不均匀的正方体骰子各一次,求所得点数之和为3的概率B.求任意一个正整数的平方的个位数字是1的概率C.从甲地到乙地共n条路线,求某人正好选中最短路线的概率D.从区间[1,3]内任取一个数,求取到2的概率答案C3.在40根纤维中,有12根的长度超过30mm,从中任取一根,取到长度超过30mm的纤维的概率是()A.B.C.D.以上都不对答案B解析在40根纤维中,有12根的长度超过30mm,即基本事件总数为40,且它们是等可能发生的,所求事件包含12个基本事件,所以所求事件的概率为=.4.把3枚硬币一起掷出,出现2枚正面朝上、1枚反面朝上的概率是()A.B.C.D.答案B解析该试验的基本事件空间为{(正,正,反),(正,正,正),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反)},且每一个基本事件发生的可能性相等而“两正一反”包含了其中3个基本事件,所以概率为,故选B.5.甲、乙两人各写一张贺年卡随意送给丙、丁两人中的一人,则甲、乙将贺年卡送给同一人的概率是()A.B.C.D.答案A解析(甲送给丙,乙送给丁),(甲送给丁,乙送给丙),(甲、乙都送给丙),(甲、乙都送给丁)共四种情况,其中甲、乙将贺年卡送给同一人的情况有两种,所以选A.6.两个骰子的点数分别为b、c,则方程x2+bx-c=0有两个实根的概率为()A.B.C.D.答案C解析共有36个结果,若方程有解,则Δ=b2-4c≥0,∴b2≥4c,满足条件的数记为(b2,4c),共有(4,4),(9,4),(9,8),(16,4),(16,8),(16,12),(16,16),(25,4),(25,8),(25,12),(25,16),(25,20),(25,24),(36,4),(36,8),(36,12),(36,16),(36,20),(36,24),19个结果,P=.二、填空题7.一叠卡片共有10张,分别写上1~10十个数字,将它们背面朝上洗匀后,任意抽出一张卡片,则P(抽到的数大于6)=________,P(抽到的数大于7小于9)=_______,P(抽到的数为偶数)=________.答案解析从10张卡片中任抽一张有10种抽法.即10个基本事件,其中抽到的数大于6包括7,8,9,10四个基本事件.由于抽到每一张的可能性都相等,故P(抽到的数大于6)==.同理可证P(抽到的数大于7小于9)=,P(抽到的数为偶数)==.8.从数字1,2,3,4,5中任取两个不同的数字构成一个两位数,这个两位数大于40的概率为________.答案解析从5个数字中任取两个不同的数字组成两位数有20个,其中大于40的数有8个,故P==.9.有20张卡片,每张卡片上分别标有两个连续的自然数k,k+1,其中k=0,1,2,…,19.从这20张卡片中任取一张,记事件“该卡片上两个数的各位数字之和(例如:若取到标有9,10的卡片,则卡片上两个数的各位数字之和为9+1+0=10)不小于14”为A,则P(A)=________.答案解析卡片如下图.…共20张.任取一张“其各位数字之和小于14”的分两种情况:①两个1位数从到共有7种选法;②有两位数的卡片从…和共8种选法,P=1-=1-=.故如上式得P=.三、解答题10.先后抛掷两枚骰子,每次各1枚,求下列事件发生的概率.(1)事件A:“出现的点数之和大于3”;(2)事件B:“出现的点数之积是3的倍数”.解先后抛掷两枚骰子可能出现的情况:(1,1),(1,2),(1,3),…,(1,6);(2,1),(2,2),(2,3),…,(2,6);…;(6,1),(6,2),(6,3),…,(6,6),基本事件总数为36.(1)在上述基本事件中,“点数之和等于3”的事件只有(1,2),(2,1)两个可能.点数之和等于2的只有(1,1)一个可能的结果,记点数之和不大于3为事件A1,则事件A1包括3个基本事件.∴事件“出现的点数之和大于3”发生的概率为P(A)==.(2)与(1)类似,在上述基本事件中,“点数之积是3的倍数”的事件有20个可能的结果.所以事件“出现的点数之积是3的倍数”发生的概率为P(B)==.11.在添加剂的搭配使用中,为了找到最...