高一数学平面向量数量积的坐标表示、模、夹角教学目的:1.掌握平面向量数量积运算规律;2.能用数量积的5个重要性质及数量积运算律解决有关问题;3.掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题.教学重点:平面向量数量积及运算规律.教学难点:平面向量数量积的应用教学过程:一、复习引入:1.平面向量数量积(内积)的定义:2.两个向量的数量积的性质:设a、b为两个非零向量,e是与b同向的单位向量.1ea=ae=|a|cos;2abab=03当a与b同向时,ab=|a||b|;当a与b反向时,ab=|a||b|.特别的aa=|a|2或4cos=;5|ab|≤|a||b|3.练习:(1)|a|=1,|b|=,且(a-b)与a垂直,则a与b的夹角是()A.60°B.30°C.135°D.45°(2)已知|a|=2,|b|=1,a与b之间的夹角为,那么向量m=a-4b的模为()A.2B.2C.6D.12二、讲解新课:探究:已知两个非零向量,,怎样用和的坐标表示?.1、平面两向量数量积的坐标表示:两个向量的数量积等于它们对应坐标的乘积的和.即2.平面内两点间的距离公式(1)设,则或.(2)如果表示向量的有向线段的起点和终点的坐标分别为、,那么(平面内两点间的距离公式)3.向量垂直的判定设,,则4.两向量夹角的余弦()cos=222221212121yxyxyyxx二、讲解范例:例1已知A(1,2),B(2,3),C(2,5),试判断△ABC的形状,并给出证明.例2设a=(5,7),b=(6,4),求a·b及a、b间的夹角θ(精确到1o)例3已知a=(1,),b=(+1,-1),则a与b的夹角是多少?用心爱心专心115号编辑解:由a=(1,),b=(+1,-1)有a·b=+1+(-1)=4,|a|=2,|b|=2.记a与b的夹角为θ,则cosθ=又∵0≤θ≤π,∴θ=评述:已知三角形函数值求角时,应注重角的范围的确定.三、课堂练习:1、P107面1、2、3题2、已知A(3,2),B(-1,-1),若点P(x,-)在线段AB的中垂线上,则x=.四、小结:1、2、平面内两点间的距离公式3、向量垂直的判定:设,,则五、课后作业:《习案》作业二十四。思考:1、如图,以原点和A(5,2)为顶点作等腰直角△OAB,使B=90,求点B和向量的坐标.解:设B点坐标(x,y),则=(x,y),=(x5,y2)∵∴x(x5)+y(y2)=0即:x2+y25x2y=0又∵||=||∴x2+y2=(x5)2+(y2)2即:10x+4y=29由∴B点坐标或;=或2在△ABC中,=(2,3),=(1,k),且△ABC的一个内角为直角,求k值.解:当A=90时,=0,∴2×1+3×k=0∴k=23当B=90时,=0,==(12,k3)=(1,k3)2×(∴1)+3×(k3)=0∴k=当C=90时,=0,∴1+k(k3)=0∴k=用心爱心专心115号编辑