1.函数的常用表示方法(1)解析法:就是用数学表达式表示两个变量之间的对应关系。(实例1)(2)图象法:就是用图象表示两个两个变量之间的对应关系。(实例2)(3)列表法:就是列出表格来表示两个变量之间的对应关系。(实例3)例3某种笔记本的单价是5元,买x个笔记本需要元。试用函数的三种表示法表示函数解:这个函数的定义域是数集{1,2,3,4,5}用解析法可将函数y=f(x)表示为用列表法可将函数表示为笔记本数x12345钱数y51015202554321,,,,x543215,,,,x,xy用图象法可将函数表示为下图.....012345510152025xy笔记本数x12345钱数y510152025下表是某校高一(1)班三位同学在高一学年度六次数学测试的成绩及班级平均分表:第一次第二次第三次第四次第五次第六次王伟988791928895张城907688758680赵磊686573727582班平分88.278.385.480.375.782.6思考1:上表反映了几个函数关系?这些函数的自变量是什么?定义域是什么?4个;测试序号;{1,2,3,4,5,6}.思考2:上述4个函数能用解析法表示吗?能用图象法表示吗?思考3:若分析、比较每位同学的成绩变化情况,用哪种表示法为宜?100Oxy543216赵磊王伟张城平均分90807060思考4:试根据图象对这三位同学在高一学年度的数学学习情况做一个分析.王伟同学的数学成绩始终高于班级平均水平,学习情况比较稳定而且成绩优秀;张城同学的数学成绩不稳定,总是在班级平均水平上下波动,而且波动幅度较大;赵磊同学的数学成绩低于班级平均水平,但他的成绩呈上升趋势,表明他的数学成绩在稳步提升.100Oxy543216赵磊王伟张城平均分90807060例5画出函数y=|x|的图象.解:由绝对值的概念,我们有y=x,x≥0,-x,x<0.图象如下:-2-30123xy12345-1某市某条公交线路的总里程是20公里,在这条线路上公交车“招手即停”,其票价如下:(1)5公里以内(含5公里),票价2元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里按照5公里计算).思考1:里程与票价之间的对应关系是否为函数?若是,函数的自变量是什么?定义域是什么?思考2:该函数用解析法怎样表示?解:设票价为y,里程为x,则根据题意,如果某空调汽车运行路线中设21个汽车站,那么汽车行驶的里程约为20公里,所以自变量x的取值范围是(0,20]由空调汽车票价的规定,可得到以下函数解析式:y=2,0