第3章整流电路3.1单相可控整流电路3.2三相可控整流电路3.3变压器漏感对整流电路的影响3.4电容滤波的不可控整流电路3.5整流电路的谐波和功率因数3.6大功率可控整流电路3.7整流电路的有源逆变工作状态3.8相控电路的驱动控制本章小结2/131引言■整流电路(Rectifier)是电力电子电路中出现最早的一种,它的作用是将交流电能变为直流电能供给直流用电设备。■整流电路的分类◆按组成的器件可分为不可控、半控、全控三种。◆按电路结构可分为桥式电路和零式电路。◆按交流输入相数分为单相电路和多相电路。◆按变压器二次侧电流的方向是单向或双向,分为单拍电路和双拍电路。3/1313.1单相可控整流电路3.1.1单相半波可控整流电路3.1.2单相桥式全控整流电路3.1.3单相全波可控整流电路3.1.4单相桥式半控整流电路4/1313.1.1单相半波可控整流电路tTVTR0a)u1u2uVTudidt12tttu2uguduVT0b)c)d)e)00图3-1单相半波可控整流电路及波形■带电阻负载的工作情况◆变压器T起变换电压和隔离的作用,其一次侧和二次侧电压瞬时值分别用u1和u2表示,有效值分别用U1和U2表示,其中U2的大小根据需要的直流输出电压ud的平均值Ud确定。◆电阻负载的特点是电压与电流成正比,两者波形相同。◆在分析整流电路工作时,认为晶闸管(开关器件)为理想器件,即晶闸管导通时其管压降等于零,晶闸管阻断时其漏电流等于零,除非特意研究晶闸管的开通、关断过程,一般认为晶闸管的开通与关断过程瞬时完成。5/131◆改变触发时刻,ud和id波形随之改变,直流输出电压ud为极性不变但瞬时值变化的脉动直流,其波形只在u2正半周内出现,故称“半波”整流。加之电路中采用了可控器件晶闸管,且交流输入为单相,故该电路称为单相半波可控整流电路。整流电压ud波形在一个电源周期中只脉动1次,故该电路为单脉波整流电路。◆基本数量关系☞:从晶闸管开始承受正向阳极电压起到施加触发脉冲止的电角度称为触发延迟角,也称触发角或控制角。☞:晶闸管在一个电源周期中处于通态的电角度称为导通角。☞直流输出电压平均值☞随着增大,Ud减小,该电路中VT的移相范围为180。◆通过控制触发脉冲的相位来控制直流输出电压大小的方式称为相位控制方式,简称相控方式。3.1.1单相半波可控整流电路2cos145.0)cos1(22)(sin221222UUttdUUd(3-1)6/1313.1.1单相半波可控整流电路utttt20t12tug0ud0id0uVT0b)c)d)e)f)++图3-2带阻感负载的单相半波可控整流电路及其波形■带阻感负载的工作情况◆阻感负载的特点是电感对电流变化有抗拒作用,使得流过电感的电流不能发生突变。◆电路分析☞晶闸管VT处于断态,id=0,ud=0,uVT=u2。☞在t1时刻,即触发角处√ud=u2。√L的存在使id不能突变,id从0开始增加。☞u2由正变负的过零点处,id已经处于减小的过程中,但尚未降到零,因此VT仍处于通态。☞t2时刻,电感能量释放完毕,id降至零,VT关断并立即承受反压。☞由于电感的存在延迟了VT的关断时刻,使ud波形出现负的部分,与带电阻负载时相比其平均值Ud下降。7/1313.1.1单相半波可控整流电路◆电力电子电路的一种基本分析方法☞把器件理想化,将电路简化为分段线性电路。☞器件的每种状态组合对应一种线性电路拓扑,器件通断状态变化时,电路拓扑发生改变。☞以前述单相半波电路为例√当VT处于断态时,相当于电路在VT处断开,id=0。当VT处于通时,相当于VT短路。两种情况的等效电路如图3-3所示。a)b)VTRLVTRLu2u2图3-3单相半波可控整流电路的分段线性等效电路a)VT处于关断状态b)VT处于导通状态8/1313.1.1单相半波可控整流电路VTb)RLu2√VT处于通态时,如下方程成立:在VT导通时刻,有t=,id=0,这是式(3-2)的初始条件。求解式(3-2)并将初始条件代入可得tURitiLsin2dd2dd)sin(2)sin(22)(2tZUeZUitLRd式中,,。由此式可得出图3-2e所示的id波形。当t=+时,id=0,代入式(3-3)并整理得22)(LRZRLtg1)sin()sin(tge图3-3b)VT处于导通状态(3-2)(3-3)(3-4)9/1313.1.1单相半波可控整流电路...