电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

提公因式法教案VIP免费

提公因式法教案_第1页
1/9
提公因式法教案_第2页
2/9
提公因式法教案_第3页
3/9
4.2提公因式法(一)•教学目标(一)教学知识点让学生了解多项式公因式的意义,初步会用提公因式法分解因式.(二)能力训练要求通过找公因式,培养学生的观察能力.•教学重点能观察出多项式的公因式,并根据分配律把公因式提出来.•教学难点让学生识别多项式的公因式.•教学过程I•创设问题情境,引入新课3371一块场地由三个矩形组成,这些矩形的长分别为4,一,4,宽都是-,求这块场地的面积.131317337解法一:S=一——+——+—x—=_+_+_=24———484813131713371解法二:S=—-+—x-+—x-二一(—+—-)=一x4=24———4—4—4—从上面的解答过程看,解法一是按运算顺序:先算乘,再算和进行的,解法二是先逆用分配律算和,再计算一次乘,由此可知解法二要简单一些.这个事实说明,有时我们需要将多项式化为积的形式,而提取公因式就是化积的一种方法.II.新课讲解1.公因式与提公因式法分解因式的概念.若将刚才的问题一般化,即三个矩形的长分别为a、b、c,宽都是m则这块场地的面积为ma+mb+mc,或m(a+b+c),可以用等号来连接.ma+mb+mc=m(a+b+c)从上面的等式中,大家注意观察等式左边的每一项有什么特点?各项之间有什么联系?等式右边的项有什么特点?等式左边的每一项都含有因式m,等式右边是m与多项式(a+b+c)的乘积,从左边到右边是分解因式.由于m是左边多项式ma+mb+mc的各项ma、mb、mc的一个公共因式,因此m叫做这个多项式的各项的公因式.由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的方法叫做提公因式法.2.例题讲解[例1]将下列各式分解因式:(1)3x+6;(2)7x2-21x;(3)8a3b2-12ab3c+abc(4)-24x3-12x2+28x.分析:首先要找出各项的公因式,然后再提取出来.解:(1)3x+6=3x+3X2=3(x+2);(2)7X2—21X=7X・X—7X・3=7X(X—3);(3)8a3b2-12ab3c+abc=8a2b•ab—12b2c•ab+ab•c=ab(8a2b—12b2c+c)(4)—24x3—12x2+28x=—4x(6x2+3x—7)3.议一议通过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤.首先找各项系数的最大公约数,如8和12的最大公约数是4.其次找各项中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最低的.III.课堂练习(一)随堂练习1.写出下列多项式各项的公因式.(1)ma+mb(m)(2)4kx—8ky(4k)(3)5y3+20y2(5y2)(4)a2b—2ab2+ab(ab)2.把下列各式分解因式(1)8x—72=8(x—9)(2)a2b—5ab=ab(a—5)(3)4m3—6m2=2m2(2m—3)(4)a2b—5ab+9b=b(a2—5a+9)(5)—a2+ab—ac=—(a2—ab+ac)=—a(a—b+c)(6)—2x3+4x2—2x=—(2x3—4x2+2x)=—2x(x2—2x+1)(二)补充练习把3x2—6xy+x分解因式解:3x2—6xy+x=x(3x—6y)大家同意这种做法吗?改正:3x2—6xy+x=x(3x—6y+1)后面的解法是正确的,出现错误的原因是受到1作为项的系数通常可以省略的影响,而在本题中是作为单独一项,所以不能省略,如果省略就少了一项,当然不正确,所以多项式中某一项作为公因式被提取后,这项的位置上应是1,不能省略或漏掉.在分解因式时应如何减少上述错误呢?将x写成x・1,这样可知提出一个因式x后,另一个因式是1.W.课时小结1.提公因式法分解因式的一般形式,如:ma+mb+mc=m(a+b+c).这里的字母a、b、c、m可以是一个系数不为1的、多字母的、幕指数大于1的单项式.2.提公因式法分解因式,关键在于观察、发现多项式的公因式.3.找公因式的一般步骤(1)若各项系数是整系数,取系数的最大公约数;(2)取相同的字母,字母的指数取较低的;(3)取相同的多项式,多项式的指数取较低的.(4)所有这些因式的乘积即为公因式.4.初学提公因式法分解因式,最好先在各项中将公因式分解出来,如果这项就是公因式,也要将它写成乘1的形式,这样可以防范错误,即漏项的错误发生.5•公因式相差符号的,如(x—y)与(y—x)要先统一公因式,同时要防止出现符号问题.V.活动与探究利用分解因式计算:(1)32004—32003;(2)(—2)101+(—2)100.解:(1)32004—32003=32003X(3—1)=32003X2=2X32003(2)...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

提公因式法教案

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部