电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

概率的基本性质VIP免费

概率的基本性质_第1页
1/20
概率的基本性质_第2页
2/20
概率的基本性质_第3页
3/20
3.1.33.1.3概率的基本性质概率的基本性质我们知道,一个事件可能包含试验的多个结果。比如在掷骰子这个试验中:“出现的点数小于或等于3”这个事件中包含了哪些结果呢?①“出现的点数为1”“②出现的点数为2”③“出现的点数为3”这三个结果把每一个结果可看作元素,而每一个事件可看作一个集合。因此。事件之间的关系及运算等价于集合之间的关系与运算。思考:在掷骰子试验中,可以定义许多事件,例如:C1={出现1点};C2={出现2点};C3={出现3点};C4={出现4点};C5={出现5点};C6={出现6点};D1={出现的点数不大于1};D2={出现的点数大于3};D3={出现的点数小于5};E={出现的点数小于7};F={出现的点数大于6};G={出现的点数为偶数};H={出现的点数为奇数};类比集合与集合的关系、运算,你能发现事件之间的关系与运算吗?……(一)、事件的关系与运算对于事件A与事件B,如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B).1.包含关系AB注:(1)图形表示:(2)不可能事件记作,任何事件都包含不可能事件。如:C1记作:BA(或AB)D3={出现的点数小于5};例:C1={出现1点};如:D3C1或C1D3一般地,若BA,且AB,那么称事件A与事件B相等。(2)两个相等的事件总是同时发生或同时不发生。B(A)2.相等事件记作:A=B.注:(1)图形表示:例:C1={出现1点};D1={出现的点数不大于1};如:C1=D13.并(和)事件若某事件发生当且仅当事件A或事件B发生,则称此事件为事件A与事件B的并事件(或和事件).记作:AB(或A+B)AB图形表示:例:C1={出现1点};C5={出现5点};J={出现1点或5点}.如:C1C5=J4.交(积)事件若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件).记作:AB(或AB)如:C3D3=C4AB图形表示:例:D2={出现的点数大于3};D3={出现的点数小于5};C4={出现4点};5.互斥事件若AB为不可能事件(AB=)那么称事件A与事件B互斥.(1)事件A与事件B在任何一次试验中不会同时发生。(2)两事件同时发生的概率为0。图形表示:AB例:C1={出现1点};C3={出现3点};如:C1C3=注:事件A与事件B互斥时(2)对立事件一定是互斥事件,但互斥事件不一定是对立事件。6.对立事件若AB为不可能事件,AB为必然事件,那么事件A与事件B互为对立事件。注:(1)事件A与事件B在任何一次试验中有且仅有一个发生。例:G={出现的点数为偶数};H={出现的点数为奇数};如:事件G与事件H互为对立事件探索:一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件?事件A:命中环数大于7环;事件C:命中环数小于6环;事件D:命中环数为6、7、8、9、10环.事件B:命中环数为10环;解:A与C互斥(不可能同时发生),B与C互斥,C与D互斥,C与D是对立事件(至少一个发生)(二)、概率的几个基本性质1.概率P(A)的取值范围(1)0≤P(A)≤1.(2)必然事件的概率是1.(3)不可能事件的概率是0.(4)若AB,则p(A)≤P(B)(B)(A)B)(Afffnnn思考:掷一枚骰子,事件C1={出现1点},事件C3={出现3点}则事件C1C3发生的频率与事件C1和事件C3发生的频率之间有什么关系?结论:当事件A与事件B互斥时2.概率的加法公式:如果事件A与事件B互斥,则P(AB)=P(A)+P(B)若事件A,B为对立事件,则P(B)=1-P(A)3.对立事件的概率公式(1)取到红色牌(事件C)的概率是多少?(2)取到黑色牌(事件D)的概率是多少?例如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A)的概率是,取到方片(事件B)的概率是。问:4141解(1)因为C=AB∪,且A与B不会同时发生,所以A与B是互斥事件。根据概率的加法公式,得:P(C)=P(A)+P(B)=1/2(2)C与D也是互斥事件,又由于CD∪为必然事件,所以C与D互为对立事件,所以P(D)=1-P(C)=1/2例某地区的年降水量在下列范围内的概率如下所示:例某地区的年降水量在下列范围内的概率如下所示:年降水量(单位:mm)[100,150)[150,200)[200,250)[250,300)概率0.120.250.160.141.1.求年降水量在[求年降水量在[100,200100,200)()范围内的概率;㎜)()范围内的概率;㎜2.2.求年降水量在[求年降水量在[15...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

概率的基本性质

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部