【分类解析】1.在数学计算、化简、证明题中的应用211242aaaaa()222222221111)aa(.D)+a+a(.C)+aa(.B)a+a(.A----例1.把多项式分解因式,所得的结果为()112242+a+a+)+a+a(a=aaaaaaaaaaaaaaa43243222222223212221211()()()()()解:原式C例2.分解因式xxxxx54321解法1:原式()()()()()()()xxxxxxxxxxxxx54323222111111解法2:原式()()()()()()()()()[()]()()()xxxxxxxxxxxxxxxxxxxxxx54324242422221111111211112.在几何学中的应用例:已知三条线段长分别为a、b、c,且满足abacbac,2222证明:以a、b、c为三边能构成三角形acbac2222acbacaaccbacbacbacbacbacbacbacbabcabcabcababc2222222220200000,即又,,即以、、为三边能构成三角形()()()证明:3.在方程中的应用例:求方程xyxy的整数解解:xyxyxyxyxyxyxyyyxxyxyxy01111111111111111即是整数或()()()(),xyxy0022或4、中考点拨=mn+nm2122--1222mnmn12111222()()()()mmnnmnmnmn例1.分解因式:_____________解:xyxy22xyxy22()()xyxy22)y+x)(yx(=)yx)(yx)(y+x(=1----例2.分解因式:____________解:xxx323412xxx323412xxx324312xxxxxx()()()()()22434322例3.分解因式:____________解:5、题型展示:mnmnn222141()mnmnn222141()mnmmnnmnmnmmnnmnmnmnmnmnmn222222222241212111()()()()()()例1.分解因式:解:abcdacbd2222110,,且abcd11例2.已知:求ab+cd的值。解:ab+cd=abcdcdababcabdcdacdbabccdbabdcdabcacbdadbdacacbdbcad()()()()()()()()222222222222acbd00原式例3.分解因式:xx323xxxxx3332333223112113222()()()()()xxxxxxxxxxxxxxxxxxxxx332222232311313()()()()()解一(拆项):解二(添项):【实战模拟】1.填空题:()分解因式:()分解因式:()分解因式:13322444311222233aabbxxxyyymnmnmn()2.已知:abcaacabcbcb03223,求的值。原式()()()abaabbcaabb2222))((22cbababaabc00原式解:3.分解因式:15aaaa51aaaaaaaaaaaaaaaaaa52223222223211111111()()()()()()()解:4.已知:A)zx)(yx(=zyx=zyx----,--3332220,试求A的表达式A是一个关于x,y,z的一次多项式,且xyz2220yxzzxyxyzxyzzxyxxyyzxyxyxxyyzxyxyxxzyxzxzxyxzxyxzxyxzxyz222222333332222222222,()()()()()[()]()[()()()]()()()()()()Axyz2解:5.证明:()()()()()ababababab22111222()()()abababab2212aabaabbbabababababababababababaabbababababab22222222222222222222224122222412212222()()()()()()()()[()()]()ababababababaabb222212111证明:()()[]211ba=--()()2112ba=--,=c,=b,=a200520042003cabcabc+b+a---222bacacbcba222abc3、若求4、若求证:、、三个数中至少的值。=0,有两个数相等.