立体几何专题——空间几何体题型一平面的性质例1下列命题:①空间不同三点确定一个平面;②有三个公共点的两个平面必重合;③空间两两相交的三条直线确定一个平面;④三角形是平面图形;⑤平行四边形、梯形、四边形都是平面图形;⑥垂直于同一直线的两直线平行;⑦一条直线和两平行线中的一条相交,也必和另一条相交;⑧两组对边相等的四边形是平行四边形.其中正确的命题是________.由公理3知,不共线的三点才能确定一个平面,所以知命题①错,②中有可能出现两平面只有一条公共线(当这三个公共点共线时),②错.③空间两两相交的三条直线有三个交点或一个交点,若为三个交点,则这三线共面,若只有一个交点,则可能确定一个平面或三个平面.⑤中平行四边形及梯形由公理2可得必为平面图形,而四边形有可能是空间四边形,如图(1)所示.【解析】总结对于空间几何中的一些概念、公理、定理和推论的理解一定要结合图形,理解其本质,准确把握其内涵,特别是定理、公理中的限制条件,如公理3中“不共线的三点”,“不共线”是很重要的条件.另外,对于平面几何中的一些正确命题,包括一些定理推论,在空间几何中应当重新认定,有些命题因为空间中位置关系的变化,可能变为错误命题,学习中要养成分类讨论的习惯,再就是结合较熟悉的立体几何图形或现实生活中的实物进行辨析,也可利用手中的笔、书本等进行演示,验证.2.如图,M是正方体ABCD-A1B1C1D1的棱DD1的中点,给出下列四个命题:①过M点有且只有一条直线与直线AB,B1C1都相交;②过M点有且只有一条直线与直线AB,B1C1都垂直;③过M点有且只有一个平面与直线AB,B1C1都相交;④过M点有且只有一个平面与直线AB,B1C1都平行.其中真命题是①②④题型二多面体的表面积和体积例3(1)如上图所示,在边长为4的正方形纸片ABCD中,AC与BD相交于O,剪去AOB,将剩余部分沿OC、OD折叠,使OA、OB重合,求以A、(B)、C、D、O为顶点的四面体的全面积和体积.【解析】翻折后的几何体为底面边长为4,侧棱长为22的正三棱锥,斜高为2,高为263,所以该四面体的全面积为:3×(12×4×2)+34×42=12+43,体积为13×12×16×32×263=823.【答案】12+43,823(2)一个空间几何体的三视图如图所示,则该几何体的表面积为()【解析】由三视图可知本题所给的是一个底面为等腰梯形的放倒的直四棱柱,所以该直四棱柱的表面积为:S=2×12×(2+4)×4+4×4+2×4+2×1+16×4=48+817.总结求解多面体的表面积及体积问题,关键是找到其中的特征图形,如棱柱中的矩形,棱锥中的直角三角形,棱台中的直角梯形等,通过这些图形,找到几何元素间的关系,建立未知量与已知量间的关系,进行求解.题型三旋转体的表面积和体积例4(1)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m3.【解析】由三视图可知该几何体是组合体,下面是长方体,长、宽、高分别为3、2、1,上面是一个圆锥,底面圆半径为1,高为3,所以该几何体的体积为3×2×1+13π×3=6+π.【答案】6+π(2)如右图所示,在直径AB=4的半圆O内作一个内接直角三角形ABC,使∠BAC=30°,将图中阴影部分,以AB为旋转轴旋转180°形成一个几何体,求该几何体的表面积及体积.【解析】AB=4,R=2,S球=4πR2=16π,设DC=x,则AC=2x,BC=xsin60°=23x3,在Rt△ABC中,4x2+4×3x29=16,x=3,S锥侧上=πrl=π·3·23=6π,S锥侧下=πrl=π·3·2=23π,S表=12(S球+S锥侧上+S锥侧下)=(11+3)π.∴V=12(V球-V锥上-V锥下)=1243πR3-13πCD2AD+BD=103π.题型四利用割补法求体积例5(1)已知正方体AC1的棱长为a,E,F分别为棱AA1与CC1的中点,求四棱锥A1-EBFD1的体积.【解析】因为EB=BF=FD1=D1E=a2+a22=52a,所以四棱锥A1-EBFD1的底面是菱形,连接EF,则△EFB≌△EFD1,由于三棱锥A1-EFB与三棱锥A1-EFD1等底同高,所以VA1-EBFD1=2VA1-EFB=2VF-EBA1=2·13·S△EBA1·a=16a3.思考题1正六棱锥P-ABCDEF中,G为PB的中点,则三棱锥D-GAC与三棱锥P-GAC体积之比为【解析】设棱锥的高为h,VDGAC=VGDAC=13S△ADC·12h,VPGAC=12VPABC=VGABC=13S△ABC·h2.又S△ADC∶S△ABC=2∶1,故VDGAC∶VPGAC=2∶1.