电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

三角函数的图象与性质VIP免费

三角函数的图象与性质_第1页
1/4
三角函数的图象与性质_第2页
2/4
三角函数的图象与性质_第3页
3/4
高三数学(理)集体备课材料主备人:杨洪亮三角函数的图象与性质一、教学目标1、掌握正弦函数、余弦函数、正切函数的图象及其性质;2、能灵活运用正弦函数、余弦函数的图象及其性质解决相关问题.二、重点、难点、易错(混)点、常考点正弦函数、余弦函数的图象及其性质的应用.三、知识梳理【《创新设计》P51】四、精选例题+变式训练考点一三角函数的定义域、值域问题【例1】(2014·广州模拟)已知函数f(x)=,求f(x)的定义域和值域.规律揭示:(1)求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.(2)三角函数值域的不同求法①利用sinx和cosx的值域直接求.②把形如y=asinx+bcosx的三角函数化为y=Asin(ωx+φ)的形式求值域.③利用sinx±cosx和sinxcosx的关系转换成二次函数求值域.【训练1】(1)函数y=的定义域为________.(2)当x∈时,函数y=3-sinx-2cos2x的最小值是________,最大值是________.【训练2】已知函数的图象经过点.(1)求实数和的值;(2)当为何值时,函数取得最大值.三角函数的图象与性质第1页共4页高三数学(理)集体备课材料主备人:杨洪亮考点二三角函数的奇偶性、周期性和对称性【例2】(1)函数y=2cos2-1的最小正周期是________.奇偶性为________.(2)函数y=2sin(3x+φ)的一条对称轴为x=,则φ=________.规律揭示:(1)求最小正周期时可先把所给三角函数式化为y=Asin(ωx+φ)或y=Acos(ωx+φ)的形式,则最小正周期为T=;奇偶性的判断关键是解析式是否为y=Asinωx或y=Acosωx+b的形式.(2)求f(x)=Asin(ωx+φ)(ω≠0)的对称轴,只需令ωx+φ=+kπ(k∈Z),求x;求f(x)的对称中心的横坐标,只需令ωx+φ=kπ(k∈Z)即可.【训练1】已知函数f(x)=sin(x∈R),下面结论正确的是________.①函数f(x)的最小正周期为π;②函数f(x)是偶函数;③函数f(x)的图象关于直线x=对称;④函数f(x)在区间上是增函数.【训练2】如果函数y=3cos(2x+φ)的图象关于点中心对称,那么|φ|的最小值为________.考点三三角函数的单调性【例3】(2014·临沂月考)设函数f(x)=sin(-2x+φ)(0<φ<π),y=f(x)图象的一条对称轴是直线x=.(1)求φ;(2)求函数y=f(x)的单调区间.规律揭示:求较为复杂的三角函数的单调区间时,首先化简成y=Asin(ωx+φ)形式,再求y=Asin(ωx+φ)的单调区间,只需把ωx+φ看作一个整体代入y=sinx的相应单调区间内即可,注意要先把ω化为三角函数的图象与性质第2页共4页高三数学(理)集体备课材料主备人:杨洪亮正数【训练1】(2012·北京卷)已知函数f(x)=.(1)求f(x)的定义域及最小正周期;(2)求f(x)的单调递减区间.【训练2】已知函数.(1)求函数的最小正周期;(2)若时,求函数的最大值和最小值.五、小结【方法规律、结论的归纳、提升】1.求三角函数的定义域应注意利用三角函数线或者三角函数图象.2.判断函数奇偶性,应先判定函数定义域的对称性,注意偶函数的和、差、积、商仍为偶函数;复合函数在复合过程中,对每个函数而言,一偶则偶,同奇则奇.3.三角函数单调区间的确定,一般先将函数式化为基本三角函数标准式,然后通过同解变形或利用数形结合方法求解.对复合函数单调区间的确定,应明确是对复合过程中的每一个函数而言,同增同减则为增,一增一减则为减.六、课后反思(1)本节课我回顾了哪些知识:(2)本节课我重新认识了哪些道理:(3)本节课学习中还存在哪些不足:备用题:三角函数的图象与性质第3页共4页高三数学(理)集体备课材料主备人:杨洪亮1、函数的周期为,且,则正整数的最大值是.2、函数的减区间是.3、若函数且为常数对任意的都有,则.4、设点是函数的图象的一个对称中心,若点到图象的对称轴的距离的最小值为,则函数的最小正周期是.5、若函数对于任意的都有,则的最小值是.6、某城市一年中个月的平均气温与月份的关系可近似地用三角函数其中来表示,已知月份的月平均气温最高,为,月份的月平均气温最高,为,则月份的月平均气温为.7、已知.(1)求函数的最小正周期;(2)设,且函数是偶函数,求满足的的集合.三角函数的图象与性质第4页共4页

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

三角函数的图象与性质

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部