电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

曲边梯形的面积教学课件VIP免费

曲边梯形的面积教学课件_第1页
1/35
曲边梯形的面积教学课件_第2页
2/35
曲边梯形的面积教学课件_第3页
3/35
1.5.1曲边梯形的面积问题二:如何求出下列图形的面积?xyoBA从中你有何启示?“分割”得到熟悉的图形曲边梯形的面积将圆分成16等份曲边梯形的面积长(a)(b)宽平分16等份平分32等份曲边梯形的面积rC2=πr因为:长方形面积=长×宽所以:圆的面积==πr22∏r2=πr×r曲边梯形的面积三国时期的数学家刘徽的割圆术“…割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣…”——刘徽当边数n无限增大时,正n边形面积无限逼近圆的面积曲边梯形的面积三国时期的数学家刘徽的割圆术“…割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣…”——刘徽当边数n无限增大时,正n边形面积无限逼近圆的面积曲边梯形的面积“…割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣…”割圆术:刘徽在《九章算术》注中讲到——刘徽当边数n无限增大时,正n边形面积无限逼近圆的面积ABC曲边梯形1.曲边梯形:在直角坐标系中,由连续曲线y=f(x),直线x=a、x=b及x轴所围成的图形叫做曲边梯形。Oxyaby=f(x)一.求曲边梯形的面积x=ax=b因此,我们可以用这条直线L来代替点P附近的曲线,也就是说:在点P附近,曲线可以看作直线(即在很小范围内以直代曲).P放大再放大PPy=f(x)baxyOA1AA1.用一个矩形的面积A1近似代替曲边梯形的面积A,得AA1+A2用两个矩形的面积近似代替曲边梯形的面积A,得y=f(x)baxyOA1A2AA1+A2+A3+A4用四个矩形的面积近似代替曲边梯形的面积A,得y=f(x)baxyOA1A2A3A4y=f(x)baxyOAA1+A2++An将曲边梯形分成n个小曲边梯形,并用小矩阵形的面积代替小曲边梯形的面积,于是曲边梯形的面积A近似为A1AiAn——以直代曲,无限逼近?0,1:2Sxyxxy积面轴所围成的平面图形的,与直线如何求抛物线形下面先研究一个特殊情ox1y2xyS?""?""问题面积直边图形题转化为求的问这个曲边多边形面积能否将求主要区别是什么的直边图形与我们熟悉的左图中的曲边多边形思考Sox1y2xyS影部分面积求图中阴曲边形的方法逼近比如矩形用直边形,)(的思想以直代曲""启发为了计算曲边三角形的面积S,将它分割成许多小曲边梯形方案1方案2方案3ox1y2xyn1ini对任意一个小曲边梯形,用“直边”代替“曲边”(即在很小范围内以直代曲),有以下三种方案“以直代曲”。oy2xy1xy2xy1xoy2xy1xoy2xy1xo根据方案一,分割越细,面积的近似值就越精确。当分割无限变细时,这个近似值就无限逼近所求曲边梯形的面积S。第一种方案“以直代曲”的具体操作过程(1)分割把区间[0,1]等分成n个小区间:],nn,n1n[,],ni,n1i[,],n2,n1[],n1,0[n1n1inix每个区间的长度为过各区间端点作x轴的垂线,从而得到n个小曲边梯形,他们的面积分别记作.S,,S,,S,Sni21n1n2nknnxOy2xy35.1图ox1y2xyn1ini45.1图n1inix12xyyo轴的直线段近似用平行于就是从图形上看值处的函数等于左端点不妨认为它近似地个常数近似等于一的值变化很小可以认为函数上在区间很小时即很大当如图记近似代替x,.n1ifn1i,,xxf,ni,n1i,xΔ,n,35.1.xxf22235.1图ox1y2xyn1ini45.1图n1inix12xyyo.n,,2,1in1n1ixΔn1ifSΔSΔ,"",SΔSΔ,ni,n1i,.45.12'iii'i则有以直代曲即在局部小范围内近似地代替的面积用小矩形上间在区这样图边地代替小曲边梯形的曲n1n1ixΔn1ifSΔSS45.1,232n1in1in1i'inn为中阴影部分的面积图由求和n1n1n102n1n1n222231n21n161n2n1nn13.n211n1131.n211n1131SSSn的近似值从而可得.61n2n1n1n21222可以证明.31n211n1131limn1ifn1limSlimS,Sn211n1131S,0xΔ,n,,55.1,20,,8,41,04nn1innn...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

曲边梯形的面积教学课件

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部