【补充练习】1.下列对象能否组成集合:(1)数组1、3、5、7;(2)到两定点距离的和等于两定点间距离的点;(3)满足3x-2>x+3的全体实数;(4)所有直角三角形;(5)美国NBA的著名篮球明星;(6)所有绝对值等于6的数;(7)所有绝对值小于3的整数;(8)中国男子足球队中技术很差的队员;(9)参加2008年奥运会的中国代表团成员.答案:(1)(2)(3)(4)(6)(7)(9)能组成集合,(5)(8)不能组成集合.2.(口答)说出下面集合中的元素:(1){大于3小于11的偶数};(2){平方等于1的数};(3){15的正约数}.答案:(1)其元素为4,6,8,10;(2)其元素为-1,1;(3)其元素为1,3,5,15.3.用符号∈或填空:(1)1______N,0______N,-3______N,0.5______N,______N;(2)1______Z,0______Z,-3______Z,0.5______Z,______Z;(3)1______Q,0______Q,-3______Q,0.5______Q,______Q;(4)1______R,0______R,-3______R,0.5______R,______R.答案:(1)∈∈(2)∈∈∈(3)∈∈∈∈(4)∈∈∈∈∈4.判断正误:(1)所有属于N的元素都属于N*.()(2)所有属于N的元素都属于Z.()(3)所有不属于N*的数都不属于Z.()(4)所有不属于Q的实数都属于R.()(5)不属于N的数不能使方程4x=8成立.()答案:(1)×(2)√(3)×(4)√(5)√5.分别用列举法、描述法表示方程组的解集.解:因的解为用描述法表示该集合为{(x,y)|};用列举法表示该集合为{(3,-7)}.拓展提升问题:集合A={x|x=a+b,a∈Z,b∈Z},判断下列元素x=0、、与集合A之间的关系.活动:学生先思考元素与集合之间有什么关系,书写过程,将元素x化为a+2b的形式,再判断a、b是否为整数.描述法表示集合的优点是突出显示了集合元素的特征,那么判断一个元素是否属于集合时,转化为判断这个元素是否满足集合元素的特征即可.解:由于x=a+b,a∈Z,b∈Z,∴当a=b=0时,x=0.0A.∴∈又=+1=1+,当a=b=1时,a+b=1+,∴A.∈又=+,当a=3,b=1时,a+b=+,而3Z,∴A.0A,∴∈A,∈A.点评:本题考查集合的描述法表示以及元素与集合间的关系.变式训练用列举法表示下列集合:(1)x2-4的一次因式组成的集合;(2){y|y=-x2-2x+3,x∈R,y∈N};(3)方程x2+6x+9=0的解集;(4){20以内的质数};(5){(x,y)|x2+y2=1,x∈Z,y∈Z};(6){大于0小于3的整数};(7){x∈R|x2+5x-14=0};(8){(x,y)|x∈N且1≤x<4,y-2x=0};(9){(x,y)|x+y=6,x∈N,y∈N}.思路分析:用列举法表示集合的关键是找出集合中的所有元素,要注意不重不漏,不计次序地用“,”隔开放在大括号内.解:(1)因x2-4=(x-2)(x+2),故符合题意的集合为{x-2,x+2};(2)y=-x2-2x+3=-(x+1)2+4,即y≤4.又yN,∈∴y=0、1、2、3、4,故{y|y=-x2-2x+3,x∈R,y∈N}={0,1,2,3,4};(3)由x2+6x+9=0得x1=x2=-3,∴方程x2+6x+9=0的解集为{-3};(4){20以内的质数}={2,3,5,7,11,13,17,19};(5)因x∈Z,y∈Z,则x=-1、0、1时,y=0、1、-1,那么{(x,y)|x2+y2=1,x∈Z,y∈Z}={(-1,0),(0,1),(0,-1),(1,0)};(6){大于0小于3的整数}={1,2};(7)因x2+5x-14=0的解为x1=-7,x2=2,则{x∈R|x2+5x-14=0}={-7,2};(8)当x∈N且1≤x<4时,x=1、2、3,此时y=2x,即y=2、4、6,那么{(x,y)|x∈N且1≤x<4,y-2x=0}={(1,2),(2,4),(3,6)};(9){(x,y)|x+y=6,x∈N,y∈N}={(0,6)(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}.