2015年山东省菏泽市高考数学一模试卷(文科)一、选择题(共10小题,每小题5分,满分50分)1.已知复数z1=1﹣i,z2=1+i,则等于()A.2iB.﹣2iC.2+iD.﹣2+i2.设集合M={0,1},N={x∈Z|y=),则()A.M∩N=B∅.M∩N={0}C.M∩N{1}D.M∩N=M3.给定函数①y=x,②y=logx,③y=|x﹣1|,④y=2x,其中在区间(0,1)上单调递减的函数序号是()A.①②B.②③C.③④D.①④4.在△ABC中,若sinA﹣sinAcosC=cosAsinC,则△ABC的形状是()A.正三角形B.等腰三角形C.直角三角形D.等腰直角三角形5.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为me,众数为m0,平均值为,则()A.me=m0=B.me=m0<C.me<m0<D.m0<me<6.已知α,β,直线l,m,且有l⊥α,mβ⊂,给出下列命题:①若α∥β,则l⊥m;②若l∥m,则α⊥β;③若α⊥β,则l∥m;④若l⊥m,则α∥β;其中,正确命题个数有()A.1B.2C.3D.47.若函数f(x)=的图象如图所示,则m的范围为()A.(﹣∞,﹣1)B.(﹣1,2)C.(1,2)D.(0,2)18.设双曲线+=1的离心率为2,且一个焦点与抛物线x2=8y的焦点相同,则此双曲线的方程为()A.﹣y2=1B.﹣=1C.y2﹣=1D.﹣=19.已知函数f(x)=(a∈R),若函数f(x)在R上有两个零点,则a的取值范围是()A.(﹣∞,﹣1)B.(﹣∞,0)C.(﹣1,0)D.[﹣1,0)10.若b>a>3,f(x)=,则下列各结论中正确的是()A.B.C.f()<f()<f(a)D.f(b)<f()<f()二、填空题(共5小题,每小题5分,满分25分)11.圆心在直线x=2上的圆C与y轴交于两点A(0,﹣4),B(0,﹣2),则圆C的方程为.12.已知x,y满足不等式组,则z=2x+y的最大值与最小值比为.13.定义在实数集R上的函数f(x)满足f(x)+f(x+2)=0,且f(4﹣x)=f(x).现有以下三种叙述:①8是函数f(x)的一个周期;②f(x)的图象关于直线x=2对称;③f(x)是偶函数其中正确的序号是.14.执行如图中的程序框,如果输入的t∈[﹣1,3],则输出的S属于区间.215.在实数集R中,我们定义的大小关系“>”为全体实数排了一个“序”类似的,我们在平面向量集D={|=(x,y),x∈R,y∈R}上也可以定义在一个称“序”的关系,记为“>>”,定义如下:对于任意两个向量=(x1,y1)2=(x2,y2),“1>>2”当且仅当“x1>x2”或“x1=x2”且“y1>y2”,按上述定义的关系“>>”给出如下四个命题:①若1=(1,0),2=(0,1),=(0,0),则1>>2>>②若1>>2,2>>3,则1>>3③若1>>2,则对于任意∈D,1+>>2+④对于任意向量>>,=(0,0),若1>>2,则•1=•2其中真命题的序号为.三、解答题(共6小题,满分75分)16.已知函数f(x)=2cos2x+2sinxcosx+a,且当x∈[0,]时,f(x)的最小值为2.(1)求a的值,并求f(x)的单调递增区间;(2)先将函数y=f(x)的图象上的点纵坐标不变,横坐标缩小到原来的,再将所得图象向右平移个单位,得到函数y=g(x)的图象,求方程g(x)=4在区间[0,]上所有根之和.17.如图,将边长为2的正六边形ABDEF沿对角线BE翻折,连接AC、FD,形成如图所示的多面体,且AC=.(1)证明:平面ABEF⊥平面BCDE;(2)求三棱锥E﹣ABC的体积.18.某中学高三年级从甲、乙两个班级各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生的平均分是85,乙班学生成绩的中位数是83.3(1)求x和y的值;(2)计算甲班7位学生成绩的方差s2;(3)从成绩在90分以上的学生中随机抽取两名学生,求甲班至少有一名学生的概率.19.已知数列{an}的前n项和为Sn,且Sn=n(n+1)(n∈N*).(Ⅰ)求数列{an}的通项公式;(Ⅱ)若数列{bn}满足:,求数列{bn}的通项公式;(Ⅲ)令(n∈N*),求数列{cn}的前n项和Tn.20.设函数f(x)=lnx﹣﹣bx(Ⅰ)当a=b=时,求函数f(x)的单调区间;(Ⅱ)令F(x)=f(x)+<x≤3),其图象上任意一点P(x0,y0)处切线的斜率k≤恒成立,求实数a的取值范围;(Ⅲ)当a=0,b=﹣1时,方程f(x)=mx在区间[1,e2]内有唯一实数解,...