专题57立体几何直线、平面的平行的判定与性质1【考点讲解】一、具本目标:1.以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定.理解以下判定定理.◆如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.◆如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.理解以下性质定理,并能够证明.◆如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行.◆如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.◆垂直于同一个平面的两条直线平行.2.能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.考点透析:以几何体为载体,考查线线、线面、面面平行证明.利用平行关系及平行的性质进行适当的转化,处理综合问题.3.备考重点:(1)掌握相关定义、公理、定理;(2)掌握平行关系、垂直关系的常见转换方法.(3)证明平行关系,要充分利用中点、三角形中位线、平行四边形以及成比例线段二、知识概述:直线与平面平行的判定与性质判定性质定义定理图形条件a∩α=∅a⊂α,b⊄α,a∥ba∥αa∥α,a⊂β,α∩β=b结论a∥αb∥αa∩α=∅a∥b面面平行的判定与性质判定性质定义定理图形条件α∩β=∅a⊂β,b⊂β,a∩b=P,a∥α,b∥αα∥β,α∩γ=a,β∩γ=bα∥β,a⊂β结论α∥βα∥βa∥ba∥α线面、面面平行的综合应用1.平面与平面的位置关系有相交、平行两种情况.2.直线和平面平行的判定(1)定义:直线和平面没有公共点,则称直线平行于平面;(2)判定定理:aα,bα,且a∥b⇒a∥α;(3)其他判定方法:α∥β;aα⇒a∥β.3.直线和平面平行的性质定理:a∥α,aβ,α∩β=l⇒a∥l.4.两个平面平行的判定(1)定义:两个平面没有公共点,称这两个平面平行;(2)判定定理:aα,bα,a∩b=M,a∥β,b∥β⇒α∥β;(3)推论:a∩b=M,a,bα,a′∩b′=M′,a′,b′β,a∥a′,b∥b′⇒α∥β.5.两个平面平行的性质定理(1)α∥β,aα⇒a∥β;(2)α∥β,γ∩α=a,γ∩β=b⇒a∥b.6.与垂直相关的平行的判定(1)a⊥α,b⊥α⇒a∥b;(2)a⊥α,a⊥β⇒α∥β.【真题分析】1.【2015全国2】设,是两个不同的平面,是直线且.“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解析】本题考点是线面平行与面面平行与充要条件的综合应用.因为,是两个不同的平面,是直线且.若“”,则平面可能相交也可能平行,不能推出,反过来若,,则有,则“”是“”的必要而不充分条件,故选B.【答案】B2.【2017优选题】设是空间中不同的直线,是不同的平面,则下列说法正确的是()A.,则B.,则C.,则D.,则【解析】本题考点是线面平行,面面平行的判定。由于可能出现,所以A错。两平面平行,要与第三平面相交,才能推出两交线平行,B选项不符,所以B错。线面平行,需与过直线的平面与已知平面的交线平行,所以C错。D中,两平面平行,则一平面中的任一直线与另一平面平行。D对。选D.【答案】D3.【2018优选题】空间中,设表示不同的直线,表示不同的平面,则下列命题正确的是()A.若,则B.若,则C.若,则D.若,则【解析】本题考点是面面平行,线面平行的判定.A项,若,过正方体同一顶点的三个平面分别为,则,故A项不合题意;B项,若,根据垂直于同一条直线的两个平面平行,则,故B项符合题意;C项,若,由同时垂直于一个平面的直线和平面的位置关系可以是直线在平面内或平行可知,直线m在平面内或平行,故C项不合题意;D项,若,由同时垂直于一条直线的直线和平面的位置关系可以是直线在平面内或平行可知,直线m在平面内或平行,故D项不合题意.故选B.【答案】B4.【2016全国课标2】α,β是两个平面,m,n是两条直线,有下列四个命题:①如果m⊥n,m⊥α,n∥β,那么α⊥β.②如果m⊥α,n∥α,那么m⊥n.③如果α∥β,mα,那么m∥β.④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)【解析】对于①,,则的位置关系无法确定,...