复数的四则运算知识回顾(4)复数的几何意义是什么?类比实数的运算法则能否得到复数的运算法则?(1)虚数单位i(2)复数的分类?(3)复数相等的等价条件?二、问题引入:我们知道实数有加、减、乘等运算,且有运算律:abbaabba()()abcabc()()abcabc()abcabac那么复数应怎样进行加、减、乘运算呢?你认为应怎样定义复数的加、减、乘运算呢?运算律仍成立吗?注意到i21,虚数单位i可以和实数进行运算且运算律仍成立,所以复数的加、减、乘运算我们已经是自然而然地在进行着,只要把这些零散的操作整理成法则即可了!三、知识新授:1.复数加减法的运算法则:(1)运算法则:设复数z1=a+bi,z2=c+di,那么:z1+z2=(a+c)+(b+d)i;z1-z2=(a-c)+(b-d)i.即:两个复数相加(减)就是实部与实部,虚部与虚部分别相加(减).(2)复数的加法满足交换律、结合律,即对任何z1,z2,z3∈C,有:z1+z2=z2+z1,(z1+z2)+z3=z1+(z2+z3).2.复数的乘法:(1)复数乘法的法则复数的乘法与多项式的乘法是类似的,但必须在所得的结果中把i2换成-1,并且把实部合并.即:(a+bi)(c+di)=ac+bci+adi+bdi2=(ac-bd)+(bc+ad)i.(2)复数乘法的运算定理复数的乘法满足交换律、结合律以及乘法对加法的分配律.即对任何z1,z2,z3有:z1z2=z2z1;(z1z2)z3=z1(z2z3);z1(z2+z3)=z1z2+z1z3.四、例题应用:例1.计算)43()2()65(iii解:iiiii11)416()325()43()2()65())((1biabia)(22222)(2ibabiabia)(例2:计算222ibabiabia22baabiba222复数的乘法与多项式的乘法是类似的.我们知道多项式的乘法用乘法公式可迅速展开,运算,类似地,复数的乘法也可大胆运用乘法公式来展开运算.)2)(43)(21(3iii)(iiiiii1520)2)(211()2)(43)(21(解:原式=()abi22=ab22注意a+bi与a-bi两复数的特点.一步到位!(1)计算(a+bi)(a-bi)思考:设z=a+bi(a,b∈R),那么(1)定义:实部相等,虚部互为相反数的两个复数互为共轭复数.复数z=a+bi的共轭复数记作?zz,zzabi即?zzzzzzzzzz12121212,另外不难证明:3.共轭复数的概念、性质:(2)共轭复数的性质:.2-2bizzazz;已知:求:iziz2,1212412121,(),zzzzz练习:实数集R中正整数指数的运算律,在复数集C中仍然成立.即对z1,z2,z3∈C及m,n∈N*有:zmzn=zm+n,(zm)n=zmn,(z1z2)n=z1nz2n.【探究】i的指数变化规律1,,1,4321iiiiii__,__,__,__8765iiii你能发现规律吗?有怎样的规律?ni414ni24ni34ni,1,i,1i)(,03424144Nniiiinnnni1i1【例3】求值:200932iiiiiiiiiiiiiiiiiii12009200820072006200587654320...)()()(解:原式常用结论:2)1(i;2iii11i1;iii11;i.i例4.设,2321i求证:⑴⑵;012.13思考:在复数集C内,你能将分解因式吗?xy22(x+yi)(x-yi)五、课堂小结:1.复数加减法的运算法则:(1)运算法则:设复数z1=a+bi,z2=c+di,那么:z1+z2=(a+c)+(b+d)i;z1-z2=(a-c)+(b-d)i.(2)复数的加法满足交换律、结合律,即对任何z1,z2,z3∈C,有:z1+z2=z2+z1,(z1+z2)+z3=z1+(z2+z3).2.复数的乘法:(1)复数乘法的法则(a+bi)(c+di)=ac+bci+adi+bdi2=(ac-bd)+(bc+ad)i.(2)复数乘法的运算律:复数的乘法满足交换律、结合律以及乘法对加法的分配律.即对任何z1,z2,z3有:z1z2=z2z1;(z1z2)z3=z1(z2z3);z1(z2+z3)=z1z2+z1z3.3.共轭复数的概念、性质:设z=a+bi(a,b∈R),那么定义:实部相等,虚部互为相反数的两个复数叫做互为共轭复数.复数z=a+bi的共轭复数记作,zzabi即zzzzzzzz12121212,.2-2bizzazz;4.i的指数变化规律:ni414ni24ni34ni,1,i,1i)(,03424144Nniiiinnnn二、问题引入:2)1(i;2iii11i1;2iiiii11;22)1)(1()1(2iiiii.22)1)(1()1(2iiiii目标:分母实数化;手段:.Rzz三、知识新授:复数的除法应怎样进行...