历年高考真题考点归纳2010年第九章解析几何第二节圆锥曲线2三、解答题1.(2010上海文)23(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知椭圆的方程为22221(0)xyabab,(0,)Ab、(0,)Bb和(,0)Qa为的三个顶点.(1)若点M满足1()2AMAQAB�,求点M的坐标;(2)设直线11:lykxp交椭圆于C、D两点,交直线22:lykx于点E.若2122bkka,证明:E为CD的中点;(3)设点P在椭圆内且不在x轴上,如何构作过PQ中点F的直线l,使得l与椭圆的两个交点1P、2P满足12PPPPPQ�12PPPPPQ�?令10a,5b,点P的坐标是(-8,-1),若椭圆上的点1P、2P满足12PPPPPQ�,求点1P、2P的坐标.解析:(1)(,)22abM;(2)由方程组122221ykxpxyab,消y得方程2222222211()2()0akbxakpxapb,因为直线11:lykxp交椭圆于C、D两点,所以>0,即222210akbp,设C(x1,y1)、D(x2,y2),CD中点坐标为(x0,y0),1则212102221201022212xxakpxakbbpykxpakb,由方程组12ykxpykx,消y得方程(k2k1)xp,又因为2221bkak,所以2102222112202221akppxxkkakbbpykxyakb,故E为CD的中点;(3)因为点P在椭圆Γ内且不在x轴上,所以点F在椭圆Γ内,可以求得直线OF的斜率k2,由12PPPPPQ�知F为P1P2的中点,根据(2)可得直线l的斜率2122bkak,从而得直线l的方程.1(1,)2F,直线OF的斜率212k,直线l的斜率212212bkak,解方程组22112110025yxxy,消y:x22x480,解得P1(6,4)、P2(8,3).2.(2010湖南文)19.(本小题满分13分)为了考察冰川的融化状况,一支科考队在某冰川山上相距8Km的A、B两点各建一个考察基地,视冰川面为平面形,以过A、B两点的直线为x轴,线段AB的垂直平分线为y轴建立平面直角坐标系(图4)。考察范围到A、B两点的距离之和不超过10Km的区域。(I)求考察区域边界曲线的方程:2(II)如图4所示,设线段12PP是冰川的部分边界线(不考虑其他边界),当冰川融化时,边界线沿与其垂直的方向朝考察区域平行移动,第一年移动0.2km,以后每年移动的距离为前一年的2倍。问:经过多长时间,点A恰好在冰川边界线上?3.(2010浙江理)(21)(本题满分15分)已知m>1,直线32:02mlxmy,椭圆222:1xCym,1,2FF分别为椭圆C的左、右焦点.(Ⅰ)当直线l过右焦点2F时,求直线l的方程;(Ⅱ)设直线l与椭圆C交于,AB两点,12AFFV,12BFFV的重心分别为,GH.若原点O在以线段GH为直径的圆内,求实数m的取值范围.解析:本题主要考察椭圆的几何性质,直线与椭圆,点与圆的位置关系等基础知识,同时考察解析几何的基本思想方法和综合解题能力。(Ⅰ)解:因为直线:l202mxmy经过22(1,0)Fm,所以2212mm,得22m,又因为1m,所以2m,故直线l的方程为22202xy。(Ⅱ)解:设1122(,),(,)AxyBxy。由222221mxmyxym,消去x得222104mymy则由2228(1)804mmm,知28m,且有212121,282mmyyyy。4由于12(,0),(,0),FcFc,故O为12FF的中点,由2,2AGGOBHHO�,可知1121(,),(,),3333xyxyGh2221212()()99xxyyGH设M是GH的中点,则1212(,)66xxyyM,由题意可知2,MOGH即222212121212()()4[()()]6699xxyyxxyy即12120xxyy而2212121212()()22mmxxyymymyyy221(1()82mm)所以21082m即24m又因为1m且0所以12m。所以m的取值范围是(1,2)。4.(2010全国卷2理)(21)(本小题满分12分)5己知斜率为1的直线l与双曲线C:2222100xyabab>,>相交于B、D两点,且BD的中点为1,3M.(Ⅰ)求C的离心率;(Ⅱ)设C的右顶点为A,右焦点为F,17DFBF,证明:过A、B、D三点的圆与x轴相切.【命题意图】本题主要考查双曲线的方程及性质,考查直线与圆的关系,既考查考生的基础知识掌握情况,又可以考查综合推理的能力.【参考答案】6【点评】高...