课时分层作业(九)正切函数的诱导公式(建议用时:40分钟)一、选择题1.tan的值为()A.B.-C.D.-C[tan=tan=tan=.]2.已知角α终边上有一点P(5n,4n)(n≠0),则tan(180°-α)的值是()A.-B.-C.±D.±A[∵角α终边上有一点P(5n,4n),∴tanα=,tan(180°-α)=-tanα=-.]3.已知tan(-80°)=k,那么tan100°的值是()A.-kB.kC.D.B[tan(-80°)=-tan80°=k,则tan80°=-k.tan100°=tan(180°-80°)=-tan80°=k.]4.已知f(α)=,则f的值为()A.B.-C.D.-B[由于tan===,所以f(α)==-cosα,则f=-cos=-cos=-cos=-.]5.已知tan(π+α)+=2,则tan(π-α)=()A.2B.-2C.1D.-1D[tan(π+α)+=tanα+=2,即=0,解得tanα=1.所以tan(π-α)=-tanα=-1.]二、填空题6.函数f(x)=asin2x+btanx+2,且f(-3)=5,则f(3)等于________.-1[∵f(-3)=asin(-6)+btan(-3)+2=5.∴-asin6-btan3=3,即asin6+btan3=-3.∴f(3)=asin6+btan3+2=-3+2=-1.]7.已知tan=,则tan=________.-[tan=tan=-tan=-.]8.已知cos=,且|φ|<,则tanφ=________.-[因为cos=-sinφ=,所以sinφ=-.1因为|φ|<,所以φ=-,所以tanφ=tan=-tan=-.]三、解答题9.求下列各式的值:(1)sincostan;(2)sin(-1200°)tan-cos585°tan.[解](1)原式=sincostan=costan=cos==-×=-.(2)原式=-sin(4×360°-240°)tan-cos(360°+225°)=-sin(-240°)tan-cos45°tan=×sin(180°+60°)-tan=-sin60°-=-.10.已知角α的终边与单位圆交于点,试求的值.[解]原式==-=-tan2α.∵角α的终边与单位圆交于点,∴tanα=-.∴原式=-.1.已知tan(π-α)=-,则的值是()A.B.C.D.1B[由tan(π-α)=-得tanα=.∴===.]2.化简tan(27°-α)·tan(49°-β)·tan(63°+α)·tan(139°-β)的结果为()A.1B.-1C.2D.-2B[原式=tan[90°-(63°+α)]·tan(49°-β)·tan(63°+α)·tan(90°+49°-β)=·tan(63°+α)·tan(49°-β)·=-1.]3.已知tan(π-x)=,则tan(x-3π)=________.-[由tan(π-x)=,知tanx=-,故tan(x-3π)=-tan(3π-x)=-tan(π-x)=tanx=-.]4.已知cos(α+β)=-1,且tanα=2,则tanβ=________.-2[由cos(α+β)=-1,知α+β=2kπ+π(k∈Z),∴β=2kπ+π-α,k∈Z.∴tanβ=tan(2kπ+π-α)=tan(π-α)=-tanα=-2.]5.已知sinα是方程5x2-7x-6=0的根,α是第三象限角,求·tan2(π-α)的值.2[解]方程5x2-7x-6=0的两根为x1=-,x2=2,由α是第三象限角,得sinα=-,则cosα=-,∴·tan2(π-α)=·tan2α=-tan2α=-=-.3