新定义题练习1、函数图像上不同两点处的切线的斜率分别是,规定叫做曲线在点与点之间的“弯曲度”,给出以下命题:①函数图像上两点与的横坐标分别为,则②存在这样的函数,图像上任意两点之间的“弯曲度”为常数;③设点、是抛物线上不同的两点,则;④设曲线上不同两点,且,若恒成立,则实数的取值范围是.以上正确命题的序号为A.①②B.②③C.③④D.②③④2、定义:如果函数y=f(x)在定义域内给定区间上存在x0(a<x0<b),满足f(x0)=,则称函数y=f(x)是上的“平均值函数”,x0是它的一个均值点.例如y=|x|是上的“平均值函数”,0就是它的均值点.给出以下命题:①函数f(x)=cosx﹣1是上的“平均值函数”;②若y=f(x)是上的“平均值函数”,则它的均值点x0≥;③若函数f(x)=x2﹣mx﹣1是上的“平均值函数”,则实数m的取值范围是m∈(0,2);④若f(x)=lnx是区间(b>a≥1)上的“平均值函数”,x0是它的一个均值点,则lnx0<.其中的真命题有.(写出所有真命题的序号)3、定义在D上的函数,如果满足:对任意,存在常数,都有成立,则称是D上的有界函数,其中M称为函数的一个上界。已知函数,。(1)若函数为奇函数,求实数的值;(2)在(1)的条件下,求函数在区间上的所有上界构成的集合;(3)若函数在上是以3为上界的有界函数,求实数的取值范围.4、已知函数及,若对于任意的,存在使得恒成立且,则称为“兄弟函数”已知函数,是定义在区间上的“兄弟函数”,那么函数在区间上的最大值为5、在实数的原有运算法则中,我们补充定义新运算“”如下:当时,;当时,。则函数的最大值等于()(“·”和“-”仍为通常的乘法和减法)A.B.1C.6D.126、定义:如果函数在定义域内给定区间上存在,满足,则称函数是上的“平均值函数”,是它的一个均值点,例如是上的平均值函数,就是它的均值点.现有函数是上的平均值函数,则实数的取值范围是.7、对a、b∈R,运算“⊕”、“”定义为:a⊕b=,ab=,则下列各式其中不恒成立的是()(1)ab+a⊕b=a+b(2)ab﹣a⊕b=a﹣b(3)[ab]•[a⊕b]=a•b(4)[ab]÷[a⊕b]=a÷b.A.(1)(3)B.(2)(4)C.(1)(2)(3)D.(1)(2)(3)(4)8、对于实数定义运算“”:,设,且关于的方程恰有三个互不相等的实数根,则的取值范围是()A.B.C.D.9、若是一个集合,是一个以的某些子集为元素的集合,且满足:①属于,空集属于;②中任意多个元素的并集属于;③中任意多个元素的交集属于.则称是集合上的一个拓扑.已知集合,对于下面给出的四个集合:①;②;③;④.其中是集合上的一个拓扑的集合的所有序号是.10、已知点,若函数的图象上存在两点到点的距离相等,则称该函数为“点距函数”,给定下列三个函数:①;②;③,其中“点距函数”的个数是()A.0B.1C.2D.311、设函数在[-1,t]上的最小值为N(t),最大值为M(t),若存在最小正整数k,使得M(t)-N(t)≤k(t+1)对任意tt∈(-1,b]成立,则称函数为区间(-1,b]上的“k阶函数”,若函数=x2为区间(-1,4]上的“k阶函数”,则k的值为()A.4B.3C.2D.112、设集合是实数集的子集,如果点满足:对任意,都存在,使得,那么称为集合的聚点,用表示整数集,下列四个集合:①,②,③,④整数集.其中以0为聚点的集合有()A.①②B.②③C.①③D.②④13、若函数在定义域内给定区间[a,b]上存在,满足,则称函数是[a,b]上的“平均值函数”,是它的一个均值点.例如是[-2,2]上的“平均值函数”,O就是它的均值点.若函数是[-1,1]上的“平均值函数”,则实数的取值范围是.14、设M、N是非空集合,定义M⊙N={x|x∈M∪N且xM∩N}.已知M={x|y=},N={y|y=2x,x>0},则M⊙N等于________.15、在上定义运算:,若不等式的解集是,则的值为()A.1B.2C.4D.816、知函数在区间上均有意义,且是其图象上横坐标分别为的两点.对应于区间内的实数,取函数的图象上横坐标为的点,和坐标平面上满足的点,得.对于实数,如果不等式对恒成立,那么就称函数在上“k阶线性近似”.若函数在上“k阶线性近似”,则实数k的取值范围为()A.B.C.D.17、在上定义运算,,则...