电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

浅谈初中数学教学渗透的思想方法VIP免费

浅谈初中数学教学渗透的思想方法_第1页
1/3
浅谈初中数学教学渗透的思想方法_第2页
2/3
浅谈初中数学教学渗透的思想方法_第3页
3/3
浅谈初中数学教学渗透的思想方法所谓数学思想,是指人们对数学理论与内容的本质认识,它直接支配着数学的实践活动。所谓数学方法,是指某一数学活动过程的途径、程序、手段,它具有过程性、层次性和可操作性等特点。数学思想是数学方法的灵魂,数学方法是数学思想的表现形式和得以实现的手段,因此,人们把它们合称为数学思想方法。数学教学的目的不仅要求学生掌握好数学的基础知识和基本技能,还要求发展学生的能力,培养他们良好的个性品质和学习习惯。在实现教学目的的过程中,数学思想方法对于打好“双基”和加深对知识的理解、培养学生的思维能力有着独到的优势,它是学生形成良好认知结构的纽带,是由知识转化为能力的桥梁。因此,在数学教学中,教师除了基础知识和基本技能的教学外,还应重视数学思想方法的渗透,注重对学生进行数学思想方法的培养,这对学生今后的数学学习和数学知识的应用将产生深远的影响。从初中阶段就重视数学思想方法的渗透将为学生后续学习打下坚实的基础,会使学生终生受益。一、初中数学教学应渗透的思想方法1、分类讨论思想分类讨论是根据教学对象的本质属性将其划分为不同种类,即根据教学对象的共同性与差异性,把具有相同属性的归入一类,把具有不同属性的归入另一类分类是数学发现的重要手段。在教学中,如果对学过的知识恰当地进行分类,就可以使大量纷繁的知识具有条理性。例如,教材中给实数的定义是“有理数与无理数统称为实数”,这个定义揭示了实数的内涵与外延,这本身就体现出分类思想方法。因此,在学完实数的概念后,可以如此分类:尔后一提到实数,就会想到它可能是有理数,也可能是无理数;一提到有理数,就会想到它可能是整数,也可能是分数等。又如,实数的绝对值定义也是采用分类法给出的,在这个定义中选择a=0作为分类的标准。在每一类中,其结果都不包含绝对值符号。因此定义也给出了脱去绝对值符号的一种方法。再如,在同一个圆中,一条弧所对的圆周角等于它所对圆心角的一半。为了验证这个猜想,教学时常将圆对折,使折痕经过圆心和圆周角的顶点,这时可能出现三种情况:⑴折痕是圆周角的一条边,⑵折痕在圆周角的内部,⑶折痕在圆周角的外部。验证时,要分三种情形来说明,这里实际上也体现了分类讨论的思想方法。还有,对三角形全等识别方法的探索,教材中的思考题:如果两个三角形有三个部分(边或角)分别对应相等,那么有哪几种可能的情况?同时,教材中对处理几种识别方法时也采用分类讨论,由简到繁,一步步得出,教学时要让学生体验这种思想方法。2、数形结合思想一般地,人们把代数称为“数”而把几何称为“形”,数与形表面看是相互独立,其实在一定条件下它们可以相互转化,数量问题可以转化为图形问题,图形问题也可以转化为数量问题。初一教材引入数轴,就为数形结合的思想奠定了基础。有理数的大小比较、相反数的几何意义、绝对值的几何意义、列方程解应用题中的画图分析等,充分显示出数与形结合起来产生的威力,这种抽象与形象的结合,能使学生的思维得到锻炼。数形结合在各年级中都得到充分的利用。例如,点与圆的位置关系,可以通过比较点到圆心的距离与圆半径两者的大小来确定,直线与圆的位置关系,可以通过比较圆心到直线的距离与圆半径两者的大小来确定,圆与圆的位置关系,可以通过比较两圆圆心的距离与两圆半径之和或之差的大小来确定。又如,勾股定理结论的论证、函数的图象与函数的性质、利用图象求二元一次方程组的近似解用三角函数解直角三角形等等都是典型的数形结合的体现。再如,有理数的加法法则、乘法法则,不等式组的解集的确定都是利用数轴或其它实图归纳总结出来的;实践与探索中行程问题教学,经常是利用线段图解的方法来引导学生分析题中的数量关系。在数学教学中,由数想形,以形助数的数形结合思想,具有可以使问题直观呈现的优点,有利于加深学生对知识的识记和理解;在解答数学题时,数形结合,有利于学生分析题中数量之间的关系,丰富表象,引发联想,启迪思维,拓宽思路迅速找到解决问题的方法,从而提高分析问题和解决问题的能力。抓住数形结合思想教学,不仅能够提高学生...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

浅谈初中数学教学渗透的思想方法

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部