电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

《2.6.2-曲线的交点》同步练习VIP免费

《2.6.2-曲线的交点》同步练习_第1页
1/4
《2.6.2-曲线的交点》同步练习_第2页
2/4
《2.6.2-曲线的交点》同步练习_第3页
3/4
《2.6.2曲线的交点》同步练习1.若焦点在轴上的椭圆的离心率为,则m=()(A)(B)(C)(D)2.已知双曲线的一条准线为,则该双曲线的离心率为()(A)(B)(C)(D)3.函数y=ax2+1的图象与直线y=x相切,则a=()A.B.C.D.14.过抛物线的焦点作一条直线与抛物线相交于A、B两点,它们的横坐标之和等于5,则这样的直线()A.有且仅有一条B.有且仅有两条C.有无穷多条D.不存在5.已知定点A、B且|AB|=4,动点P满足|PA|-|PB|=3,则|PA|的最小值是()A.B.C.D.56.抛物线y=ax2与直线y=kx+b(k≠0)交于A、B两点,且此两点的横坐标分别为x1,x2,直线与x轴交点的横坐标是x3,则恒有()A.x3=x1+x2B.x1x2=x1x3+x2x3C.x1+x2+x3=0D.x1x2+x2x3+x3x1=07.设椭圆的两个焦点分别为F1、、F2,过F2作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率是()(A)(B)(C)(D)8.已知双曲线-=1(a>0,b>0)的右焦点为F,右准线与一条渐近线交于点A,△OAF的面积为(O为原点),则两条渐近线的夹角为()A.30ºB.45ºC.60ºD.90º9.斜率为1的直线l与椭圆+y2=1相交于A、B两点,则|AB|的最大值为()A.2B.C.D.10.设直线关于原点对称的直线为,若与椭圆的交点为A、B、,点P为椭圆上的动点,则使的面积为的点P的个数为()(A)1(B)2(C)3(D)411设、F1(-c,0),F2(c,0)是椭圆12222byax(a>b>0)的两个焦点,P是以|F1F2|为直径的圆与椭圆的一个交点,且∠PF1F2=5∠PF2F1,则该椭圆的离心率为()(A)316(B)23(C)22(D)3212经过双曲线、(a>0,b>0)上任一点M,作平行于实轴的直线,与渐近线交于P,Q两点,则|MP|·|MQ|为定值,其值等于()(A)(B)(C)(D)13.已知点A(0,-3),B(2,3),点P在x2=y上,当△PAB的面积最小时,点P的坐标是_________.14.如图,已知某椭圆的焦点是F1(-4,0)、F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1),C(x2,y2)满足条件:|F2A|、|F2B|、|F2C|成等差数列.(1)求该弦椭圆的方程;(2)求弦AC中点的横坐标;(3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.《曲线的交点》同步练习答案1..C2.D3.B4.B5.C6.B7.D8.D9.C10.B11.A12.A11.(,)12.解析:设C、D所在直线方程为y=x+b,代入y2=x,利用弦长公式可求出|CD|的长,利用|CD|的长等于两平行直线y=x+4与y=x+b间的距离,求出b的值,再代入求出|CD|的长.答案:18或5013.解析:设所求直线与y2=16x相交于点A、B,且A(x1,y1),B(x2,y2),代入抛物线方程得y12=16x1,y22=16x2,两式相减得,(y1+y2)(y1-y2)=16(x1-x2).即kAB=8.故所求直线方程为y=8x-15.答案:8x-y-15=014.解:(1)由椭圆定义及条件知,2a=|F1B|+|F2B|=10,得a=5,又c=4,所以b==3.故椭圆方程为=1.(2)由点B(4,yB)在椭圆上,得|F2B|=|yB|=.因为椭圆右准线方程为x=,离心率为,根据椭圆定义,有|F2A|=(-x1),|F2C|=(-x2),由|F2A|、|F2B|、|F2C|成等差数列,得(-x1)+(-x2)=2×,由此得出:x1+x2=8.设弦AC的中点为P(x0,y0),则x0==4.(3)解法一:由A(x1,y1),C(x2,y2)在椭圆上.得①-②得9(x12-x22)+25(y12-y22)=0,即9×=0(x1≠x2)将(k≠0)代入上式,得9×4+25y0(-)=0(k≠0)即k=y0(当k=0时也成立).由点P(4,y0)在弦AC的垂直平分线上,得y0=4k+m,所以m=y0-4k=y0-y0=-y0.由点P(4,y0)在线段BB′(B′与B关于x轴对称)的内部,得-

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

《2.6.2-曲线的交点》同步练习

您可能关注的文档

确认删除?
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群