电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

第五讲--最大公约数与最小公倍数VIP免费

第五讲--最大公约数与最小公倍数_第1页
1/2
第五讲--最大公约数与最小公倍数_第2页
2/2
第五讲最大公约数与最小公倍数【知识导引】一、约数的概念与最大公约数约数又叫因数(在正整数范围内)整数a能被整数b整除,a叫做b的倍数,b就叫做a的约数。最大公约数:如果一个数既是数a的约数,又是数b的约数,称为[a,b]的约数。几个数公有的因数,叫做这几个数的公因数,其中最大的一个叫做这几个数的最大公因数。1.求最大公约数的方法①分解质因数法:先分解质因数,然后把相同的因数连乘起来。例如:2313711,22252237,所以(231,252)3721;②短除法:先找出所有共有的约数,然后相乘。例如:2181239632,所以(12,18)236;③辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数。用辗转相除法求两个数的最大公约数的步骤如下:先用小的一个数除大的一个数,得第一个余数;再用第一个余数除小的一个数,得第二个余数;又用第二个余数除第一个余数,得第三个余数;这样逐次用后一个余数去除前一个余数,直到余数是0为止。那么,最后一个除数就是所求的最大公约数(如果最后的除数是1,那么原来的两个数是互质的)。例如,求600和1515的最大公约数:15156002315;6003151285;315285130;28530915;301520;所以1515和600的最大公约数是15。2.最大公约数的性质①几个数都除以它们的最大公约数,所得的几个商是互质数;②几个数的公约数,都是这几个数的最大公约数的约数;③几个数都乘以一个自然数n,所得的积的最大公约数等于这几个数的最大公约数乘以n。3.求一组分数的最大公约数先把带分数化成假分数,其他分数不变;求出各个分数的分母的最小公倍数a;求出各个分数的分子的最大公约数b;ba即为所求。二、倍数的概念与最小公倍数对于整数m,能被n整除(n/m),那么m就是n的倍数。如15能够被3或5整除,我们就说15是3的倍数,也是5的倍数。几个数公有的倍数叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。undefined1.求最小公倍数的方法①分解质因数法求最小公倍数例如:2313711,22252237,所以22231,252237112772;②短除法求最小公倍数例如:2181239632,所以18,12233236;③公式法:[,](,)ababab2.最小公倍数的性质①两个数的任意公倍数都是它们最小公倍数的倍数。②两个互质的数的最小公倍数是这两个数的乘积。③两个数具有倍数关系,则它们的最大公约数是其中较小的数,最小公倍数是较大的数。3.求一组分数的最小公倍数方法步骤先将各个分数化为假分数;求出各个分数分子的最小公倍数a;求出各个分数分母的最大公约数b;ba即为所求。例如:35[3,5]15[,]412(4,12)4注意:两个最简分数的最大公约数不能是整数,最小公倍数可以是整数。例如:1,414,4232,3三、最大公约数与最小公倍数的常用性质1.两个自然数分别除以它们的最大公约数,所得的商互质。如果m为A、B的最大公约数,且Ama,Bmb,那么ab、互质,所以A、B的最小公倍数为mab,所以最大公约数与最小公倍数有如下一些基本关系:①ABmambmmab,即两个数的最大公约数与最小公倍数之积等于这两个数的积;②最大公约数是A、B、AB、AB及最小公倍数的约数。2.两个数的最大公约和最小公倍的乘积等于这两个数的乘积,即(,)[,]ababab。3.对于任意3个连续的自然数,如果三个连续数的奇偶性为:①奇偶奇,那么这三个数的乘积等于这三个数的最小公倍数,例如:567210,210就是567的最小公倍数。②偶奇偶,那么这三个数的乘积等于这三个数最小公倍数的2倍,例如:678336,而6,7,8的最小公倍数为3362168③几个数最小公倍数一定不会比他们的乘积大。【例题解析】【A组——基础夯实】例1两个数的最大公约数是4,最小公倍数是252,其中一个数是28,另一个数是多少?解:由ab=[a,b]×(a,b)可得:另一个数为,252×4÷28=36答:另一个数是36。例2求437与323最大公约数是多少?解:运用辗转相除法:437÷323=1…114;323÷114=2…95;114÷95=1…19,95÷19=5,那么(437,323)=19答:437与323的最大公约数是19。例3...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

第五讲--最大公约数与最小公倍数

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部