电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

用配方法求解二次项系数不是1的一元二次方程VIP免费

用配方法求解二次项系数不是1的一元二次方程_第1页
1/9
用配方法求解二次项系数不是1的一元二次方程_第2页
2/9
用配方法求解二次项系数不是1的一元二次方程_第3页
3/9
2.2用配方法求解一元二次方程第二章一元二次方程导入新课讲授新课当堂练习课堂小结第2课时用配方法求解较复杂的一元二次方程问题:用配方法解一元二次方程(二次项系数为1)的步骤是什么?步骤:(1)将常数项移到方程的右边,使方程的左边只含二次项和一次项;(2)两边都加上一次项系数一半的平方.(3)直接用开平方法求出它的解.导入新课用配方法解二次项系数不为1的一元二次方程一问题1:观察下面两个是一元二次方程的联系和区别:①x2+6x+8=0;②3x2+18x+24=0.问题2:用配方法来解x2+6x+8=0.解:移项,得x2+6x=-8,配方,得(x+3)2=1.开平方,得x+3=±1.解得x1=-2,x2=-4.想一想怎么来解3x2+18x+24=0.讲授新课例1:用配方法解方程:3x2+18x+24=0.解:方程两边同时除以3,得x2+6x+8=0.移项,得x2+6x=-8,配方,得(x+3)2=1.开平方,得x+3=±1.解得x1=-2,x2=-4.在使用配方法过程中若二次项的系数不为1时,需要将二次项系数化为1后,再根据配方法步骤进行求解.结论例2:解方程:3x2+8x-3=0.解:两边同除以3,得x2+x-1=0.配方,得x2+x+()2-()2-1=0,(x+)2-=0.移项,得x+=±,即x+=或x+=.所以x1=,x2=-3.343438349253435343435353831例3:一个小球从地面上以15m/s的初速度竖直向上弹出,它在空中的高度h(m)与时间t(s)满足关系:h=15t-5t2.小球何时能达到10m高?解:将h=10代入方程式中.15t-5t2=10.两边同时除以-5,得t2-3t=-2,配方,得t2-3t+()2=()2-2,(t-)2=232323.41移项,得(t-)2=即t-=,或t-=.所以t1=2,t2=1.23,2123212321①二次项系数要化为1;②在二次项系数化为1时,常数项也要除以二次项系数;③配方时,两边同时加上一次项系数一半的平方.注意即在1s或2s时,小球可达10m高.归纳总结配方法的应用类别解题策略1.求最值或证明代数式的值为恒正(或负)对于一个关于x的二次多项式通过配方成a(x+m)2+n的形式后,(x+m)2≥0,n为常数,当a>0时,可知其最小值;当a<0时,可知其最大值.2.完全平方式中的配方如:已知x2-2mx+16是一个完全平方式,所以一次项系数一半的平方等于16,即m2=16,m=±4.3.利用配方构成非负数和的形式对于含有多个未知数的二次式的等式,求未知数的值,解题突破口往往是配方成多个完全平方式得其和为0,再根据非负数的和为0,各项均为0,从而求解.如:a2+b2-4b+4=0,则a2+(b-2)2=0,即a=0,b=2.课堂小结配方法方法在方程两边都配上2.2二次项系数()步骤一移常数项;二配方[配上];三写成(x+n)2=p(p≥0);四直接开平方法解方程.22二次项系数()特别提醒:在使用配方法解方程之前先把方程化为x2+px+q=0的形式.应用求代数式的最值或证明

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

用配方法求解二次项系数不是1的一元二次方程

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部