例1:什么叫比例比例的意义比例基本性质例2例2例3:解比例例4:例5例6求实际、图上距离,比例尺例1——例3:成正比例的量例4——例6:成反比例的量例7:正比例和反比例的比较例1:正比例意义应用题例2:反比例意义应用题1.比例:表示两个相等的式子叫做比例。2.基本性质:在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。3.组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。4.两个数相除又叫做两个数的比,5.比的前项除以比的后项所得商,叫做比值。6.比例的意义:两个比值相等的两个比,用等于连接起来80:2=200:580:200=2:57.正比例和反比例的意义正比例和反比例-正比例1.、用文字来描述:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系,正比例的图像是一条直线2、用字母表示:如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系可以用以下关系式表示:y:x=k(一定)。3、正比例关系两种相关联的量的变化规律:同时扩大,同时缩小,比值不变.例如:汽车每小时行驶的速度一定,所行的路程和所用的时间是否成正比例?以上各种商都是一定的,那么被除数和除数.所表示的两种相关联的量,成正比例关系.注意:在判断两种相关联的量是否成正比例时应注意这两种相关联的量,虽然也是一种量,随着另一种的变化而变化,但它们相对应的两个数的比值不一定,它们就不能成正比例.例如:一个人的年龄和它的体重,就不能成正比关系,正方形的边长和它的面积也不成正比例关系.行驶的路程和时间是成比例的量。比例正比例和反比例的意义比例的意义和基本性质比例的应用正比例和反比例-反比例1.、用文字来描述:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系,正比例的图像是一条直线2、用字母表示:如果用字母x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系可以用以下关系式表示:y:x=k(一定)。3、正比例关系两种相关联的量的变化规律:同时扩大,同时缩小,比值不变.例如:汽车每小时行驶的速度一定,所行的路程和所用的时间是否成正比例?以上各种商都是一定的,那么被除数和除数.所表示的两种相关联的量,成正比例关系.注意:在判断两种相关联的量是否成正比例时应注意这两种相关联的量,虽然也是一种量,随着另一种的变化而变化,但它们相对应的两个数的比值不一定,它们就不能成正比例.例如:一个人的年龄和它的体重,就不能成正比关系,正方形的边长和它的面积也不成正比例关系.行驶的路程和时间是成比例的量。正比例和反比例-反比例两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系.如果用字母x和y表示两种相关联的量,用k表示它们的积,反比例关系可以用下面关系式表示:x×y=k(一定)1、分析反比例的意义。成反比例的量包括三个数量,一个定量和两个变量。研究两个变量之间的扩大(或缩小)的变化关系。一种量发生变化,引起另一种量发生相反的变化。这两种量是反比例的量,它们的关系成反比例关系。2、成反比例的量前提:两种相关的量(乘法关系)要求:一个量变化,另一个量也随着变化,并且,这两个量中相对应的两个数的乘积一定。结论:这两个量就叫做反比例的量,它们的关系叫做反比例关系。.字母表示法:设x与y是两个相关的量(具有相乘的关系),k是x与y的乘积(k一定),即:x*y=k(一定)接着用字母x、y表示两种相关联的量,把正比例关系进一步抽象概括成=k(一定)。3、正比例与反比例的异同:(1)正比例的图像时上升直线;反比例是曲线。(2)公式不同:正比例是(x/y=k(一定)),反比例是(xy=k(一定))。(3)规律不同:正比例是一个数缩小,另一个数也缩小,一个数扩大,另一个数也扩大;反比例是一个数缩小,另一个数就扩大,一个数扩大另一个数就缩小。