13.1.3积的乘方华东师大版八年级数学上册1.(口答)计算:(1)[()3]221(2)[(-1)3]5(3)(104)2(4)104×102=641=-1=108=106温故知新(8)[(-a)5]2(6)x3•x3(7)x3+x3(5)(x3)3(9)[(-a)3]5=x9=x6=2x3=a10=-a15(ab)3的底数是,指数是;2.指出下列各幂的底数和指数,并用语言叙述下列各式:(ab)3;(ab)4。ababab3a与b的积的3次方语言叙述为(ab)4的底数是,指数是;ab4语言叙述为a与b的积的4次方(ab)3(ab)4积的乘方=a3b3=a4b4(ab)3(ab)4=(ab)•(ab)•(ab)=(a•a•a)•(b•b•b)=a3b3=a4b4试一试试一试计算:猜想猜想(ab)n=(n是正整数)你能说明你的猜想的正确性吗?由(ab)3=a3b3(ab)4=a4b4anbn从左到右的变化探究新知(其中n是正整数)(ab)n=abn=(ab)•(ab)••(ab)()个()个()个=(a•a••a)•(b•b••b)……nnn…n(n是正整数)(ab)n=anbn请用语言叙述积的乘方的性质:积的乘方,等于把积的每一个因式分别,再把所得的幂.乘方相乘(n是正整数)(abc)n=anbncn例1.计算:(1)(xy)5(2)(-2a)3(3)(ab)421=x5y5=(-2)3•a3=-8a3=()4•a4•b421=a4b4161综合运用例2.计算:(1)(ab2)3(2)(3a2b3)3=a3•(b2)3=a3b6=33•(a2)3•(b3)3=27a6b9(1)(ab2)3解:(2)(3a2b3)3例3.计算:(1)(-2a2b)3•(-2a2b)2(2)(3a3b3)2-(2a2b2)3解:(1)(-2a2b)3•(-2a2b)2=(-2a2b)5=-32a10b5(2)(3a3b3)2-(2a2b2)3=9a6b6-8a6b6=a6b61.(口答)计算:(1)(3x)3(2)(-ab)5=27x3=-a5b5(3)(xy)421=x4y4161(4)(-2m)4=16m4(5)(3st)2=9s2t2(6)(mn)323=m3n3827拓展训练2.计算:(1)(xy2)3(2)(-a2b)4(3)(-0.5a2b3)2(4)(-2x2)3•(-2x2)2(5)(2×102)3(6)(-b2•b•b3)23.下面计算对不对?如果不对,应怎样改正?(1)(ab3)2=ab6()(2)(-a2b3)5=a10b15(3)(3a3b2)3=9a9b6(4)(a+b)2=a2+b2()()()(1)(ab3)2=ab6()×()×(ab3)2=a2b6(2)(-a2b3)5=a10b15(-a2b3)5=-a10b15(3)(3a3b2)3=9a9b6()×(3a3b2)3=27a9b6()×(4)(a+b)2=a2+b2(a+b)2=a2+2ab+b24.计算:(1)410×0.2510(3)410×0.2511(2)5×5)312()73(看谁本领大!知识归纳本节课你收获了什么?再见