平行四边形复习学案一:【知识梳理】1.平行四边形是四边形中应用广泛的一种图形,它是研究特殊四边形的基础,是研究线段相等、角相等和直线平行的根据之一.2.平行四边形的定义:两组对边分别平行的四边形是平行四边形,平行四边形的定义要抓住两点,即“四边形”和“两组对边分别平行”.4.平行四边形的性质:平行四边形的两组对边分别平行;平行四边形的两组对边分别相等;平行四边形的两组对角分别相等;平行四边形的对角线互相平分.5.平行四边形的判定:两组对边分别平行的四边形是平行四边形.两组对边分别相等的四边形是平行四边形.一组对边平行且相等的四边形是平行四边形.两组对角分别相等的四边形是平行四边形.对角线互相平分的四边形是平行四边形.二:【经典考题剖析】1.在四边形ABCD中,给出下列条件:①AB∥CD,②AD=BC,③∠A=∠C,④AD∥BC.能判断四边形是平行四边形的组合是_______2.下面给出四边形ABCD中∠A、∠B、∠C、∠D的度数之比,其中能判别四边形ABCD是平行四边形的是()A.l:2:3:4B.2:3:2:3C.2:3:3:2D.1:2:2:33.以不在同一直线上的三点作平行四边形的三个顶点,则可作出平行四边形()A.1个B.2个C.3个D.4个4.如图,□ABCD中,对角线AC和BD相交于点O,如果AC=12,BD=10,AB=m,那么m的取值范围是()A.1<m<11;B.2<m<22;C.10<m<12;D.5<m<65.平行四边形一组对角的平分线()A.在同一条直线上;B.平行;C.相交;D.平行或在同一直线上6.如图,在□ABCD中,如果点M为CD中点,AM与BD相交于点N那么SΔDMN:S□ABCD为()A.1:12B.1:9C.1:8D.1:67.已知□ABCD的周长为30㎝,AB:BC=2:3,那么AB=___________㎝.8.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,如果AC=10,BD=8,AB=x,则x的取值范围是()A.1<x<9;B.2<x<18;C.8<x<10;D.4<x<59.如图,在平行四边形ABCD中,点E、F在对角线AC上,且AE=CF,请你以F为一个端点,和图中已标明字母的某一个点连成一条新线段,猜想并证明它和图中已有的某一条线段相等.(只需说明一组线段相等即可)(1)连接_______;(2)猜想________(3)说明理由.10.已知:如图在△ABC中,AB=AC=a,M为底边BC上任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形?说明你的理由.矩形、菱形、正方形一:【知识梳理】1.性质:(1)矩形:①矩形的四个角都是直角.②矩形的对角线相等.③矩形具有平行四边形的所有性质.(2)菱形:①菱形的四条边都相等.②菱形的对角线互相垂直,并且每条对角线平分一组对角.③具有平行四边形所有性质.(3)正方形:①正方形的四个角都是直角,四条边都相等.②正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角.2.判定:(1)矩形:①有一个角是直角的平行四边形是矩形.②对角线相等的平行四边形是矩形.③有三个角是直角的四边形是矩形.(2)菱形:①对角线互相垂直的平行四边形是菱形.②一组邻边相等的平行四边形是菱形.③四条边都相等的四边形是菱形.(3)正方形:①有一个角是直角的柳是正方形.②有一组邻边相等的矩形是正方形.③对角线相等的菱形是正方形.④对角线互相垂直的矩形是正方形.3.面积计算:(1)矩形:S=长×宽;(2)菱形:(是对角线)(3)正方形:S=边长24.平行四边形与特殊平行四边形的关系二:【经典考题剖析】1.下列四个命题中,假命题是()A.两条对角线互相平分且相等的四边形是正方形B.菱形的一条对角线平分一组对角C.顺次连结四边形各边中点所得的四边形是平行四边形D.等腰梯形的两条对角线相等2.将矩形ABCD沿AE折叠,得到如图所示的图形,已知∠CED=60°,则∠AED的大小是()A.60°.B.50°.C.75°.D.55°3.正方形的对角线长为a,则它的对角线的交点到各边的距离为()A、aB、aC、D、2a4.如图,是根据四边形的不稳定性制作的边长均为15㎝的可活动菱形衣架.若墙上钉子间的距离AB=BC=15㎝,则∠1=_____度5.下列四边形中,两条对角线一...