课题解直角三角形(四)一、教学目标1、使学生了解方位角的命名特点,能准确把握所指的方位角是指哪一个角2、逐步培养学生分析问题、解决问题的能力;渗透数形结合的数学思想和方法.3、巩固用三角函数有关知识解决问题,学会解决方位角问题.二、教学重点、难点重点:用三角函数有关知识解决方位角问题难点:学会准确分析问题并将实际问题转化成数学模型三、教学过程(一)复习引入1、叫同学们在练习薄上画出方向图(表示东南西北四个方向的)。2、依次画出表示东南方向、西北方向、北偏东65度、南偏东34度方向的射线(二)教学互动例5如图,一艘海轮位于灯塔P的北偏东65方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34方向上的B处.这时,解:如图,在中,在中,.,因此.当海轮到达位于灯塔P的南偏东340方向时,它距离灯塔P大约130.23海里.海轮所在的B处距离灯塔P有多远(精确到0.01海里)?(三)巩固再现1、P9512、上午10点整,一渔轮在小岛O的北偏东30°方向,距离等于10海里的A处,正以每小时10海里的速度向南偏东60°方向航行.那么渔轮到达小岛O的正东方向是什么时间?(精确到1分).3、如图6-32,海岛A的周围8海里内有暗礁,鱼船跟踪鱼群由西向东航行,在点B处测得海岛A位于北偏东60°,航行12海里到达点C处,又测得海岛A位于北偏东30°,如果鱼船不改变航向继续向东航行.有没有触礁的危险?四、布置作业P977、9课题解直角三角形(五)一、教学目标1、巩固用三角函数有关知识解决问题,学会解决坡度问题.2、逐步培养学生分析问题、解决问题的能力;渗透数形结合的数学思想和方法.3、培养学生用数学的意识,渗透理论联系实际的观点.二、教学重点、难点重点:解决有关坡度的实际问题.难点:理解坡度的有关术语.三、教学过程(一)复习引入1.讲评作业:将作业中学生普遍出现问题之处作一讲评.2.创设情境,导入新课.例同学们,如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:如图6-33水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i=1∶3,斜坡CD的坡度i=1∶2.5,求斜坡AB的坡面角α,坝底宽AD和斜坡AB的长(精确到0.1m).同学们因为你称他们为工程师而骄傲,满腔热情,但一见问题又手足失措,因为连题中的术语坡度、坡角等他们都不清楚.这时,教师应根据学生想学的心情,及时点拨.(二)教学互动通过前面例题的教学,学生已基本了解解实际应用题的方法,会将实际问题抽象为几何问题加以解决.但此题中提到的坡度与坡角的概念对学生来说比较生疏,同时这两个概念在实际生产、生活中又有十分重要的应用,因此本节课关键是使学生理解坡度与坡角的意义.1.坡度与坡角结合图6-34,教师讲述坡度概念,并板书:坡面的铅直高度h和水平宽度l的比叫做坡度(或叫做坡比),一般用i表示。即i=,常写成i=1:m的形式如i=1:2.5把坡面与水平面的夹角α叫做坡角.引导学生结合图形思考,坡度i与坡角α之间具有什么关系?答:i==tan这一关系在实际问题中经常用到,教师不妨设置练习,加以巩固.练习(1)一段坡面的坡角为60°,则坡度i=______;______,坡角______度.为了加深对坡度与坡角的理解,培养学生空间想象力,教师还可以提问:(1)坡面铅直高度一定,其坡角、坡度和坡面水平宽度有什么关系?举例说明.(2)坡面水平宽度一定,铅直高度与坡度有何关系,举例说明.答:(1)如图,铅直高度AB一定,水平宽度BC增加,α将变小,坡度减小,因为tan=,AB不变,tan随BC增大而减小(2)与(1)相反,水平宽度BC不变,α将随铅直高度增大而增大,tanα也随之增大,因为tan=BCAB不变时,tan随AB的增大而增大2.讲授新课引导学生回头分析引题,图中ABCD是梯形,若BE⊥AD,CF⊥AD,梯形就被分割成Rt△ABE,矩形BEFC和Rt△CFD,AD=AE+EF+FD,AE、DF可在△ABE和△CDF中通过坡度求出,EF=BC=6m,从而求出AD.以上分析最好在学生充分思考后由学生完成,以培养学生逻辑思维能力及良好的学习习惯.坡度问题计算过程很繁琐,因此教师一定要做好示范,并严格要求学生,选择最简练、准确的方法计算,以培养学生运算能力.解:作BE⊥A...