一、鸡兔同笼问题例题透析 例题 1:有若干只鸡和兔子,它们共有 88 个头,244 只脚,鸡和兔各有多少只? 解:我们设想,每只鸡都是“金鸡独立”,一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,·也就是 244÷2=122(只). 在 122 这个数里,鸡的头数算了一次,兔子的头数相当于算了两次.因此从 122 减去总头数 88,剩下的就是兔子头数 122-88=34, 有 34 只兔子.当然鸡就有 54 只. 答:有兔子 34 只,鸡 54 只. 上面的计算,可以归结为下面算式: 总脚数÷2-总头数=兔子数. 上面的解法是《孙子算经》中记载的.做一次除法和一次减法,马上能求出兔子数,多简单!能够这样算,主要利用了兔和鸡的脚数分别是 4 和 2,4 又是 2 的 2 倍.可是,当其他问题转化成这类问题时,“脚数”就不一定是 4 和 2,上面的计算方法就行不通.因此,我们对这类问题给出一种一般解法. 还说此题. 如果设想 88 只都是兔子,那么就有 4×88 只脚,比 244 只脚多了 88×4-244=108(只). 每只鸡比兔子少(4-2)只脚,所以共有鸡 (88×4-244)÷(4-2)= 54(只). 说明我们设想的 88 只“兔子”中,有 54 只不是兔子.而是鸡.因此可以列出公式 鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数). 当然,我们也可以设想 88 只都是“鸡”,那么共有脚 2×88=176(只),比 244 只脚少了 244-176=68(只). 每只鸡比每只兔子少(4-2)只脚, 68÷2=34(只). 说明设想中的“鸡”,有 34 只是兔子,也可以列出公式 兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数). 上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头数去减,就知道另一个数. 假设全是鸡,或者全是兔,通常用这样的思路求解,有人称为“假设法”. 现在,拿一个具体问题来试试上面的公式. 例题 2: 红铅笔每支 0.19 元,蓝铅笔每支 0.11 元,两种铅笔共买了 16 支,花了 2.80 元.问红、蓝铅笔各买几支? 解:以“分”作为钱的单位.我们设想,一种“鸡”有 11 只脚,一种“兔子”有 19 只脚,它们共有 16 个头,280 只脚. 现在已经把买铅笔问题,转化成“鸡兔同笼”问题了.利用上面算兔数公式,就有 蓝笔数=(19×16-280)÷(19-11) =24÷8 =3(支). 红笔数=16-3=13(支). 答:买了 13 支红铅笔和 3 支蓝铅笔. 对于这类问题的计算,常...