《同位角、内错角、同旁内角》教学设计§5.1.3 同位角、内错角、同旁内角【教学重点与难点】教学重点:同位角、内错角、同旁内角的概念教学难点:在较复杂的图形中辨认同位角、内错角、同旁内角【教学目标】1、 理解同位角、内错角、同旁内角的概念;结合图形识别同位角、内错角、同旁内角。2、通过变式图形的识图训练,培养学生的识图能力.3、从复杂图形分解为基本图形的过程中,渗透化繁为简,化难为易的化归思想;从图形变化过程中,培养学生辩证唯物主义观点【教学方法】以问题为载体给学生提供探索的空间,引导学生积极探索。教学环节的设计与展开,都以问题的解决为中心,使教学过程成为在教师指导下学生的一种自主探索的学习活动过程,在探索中形成自己的观点。【教学过程】一、复习回顾 引入新课(设计说明:本节课是研究两条直线被第三条直线所截成的不共顶点的角的位置关系,它是以两条直线相交构成的四个角的知识为基础的,因此复习两线相交所成的四角的相关知识可起到承上启下的作用。)问题:我们已经知道,两条直线相交组成四个角(如图),任意两角间都关系,我们分别称它们为什么角?,它们之间又有怎样的数量关系?两 条 直 线 相 交 , 形 成 两 对 对 顶 角 ( ∠ 1 和∠3、∠2 与∠4),它们相等;四对邻补角(如∠1 和∠2…),它们互补。如果我们再加入一条直线 CD 也与直线 EF 相交,会出现什么情况呢?如图,直线AB、CD 与 EF 相交(或者说成两条直线 AB、CD 被第三条直线 EF 所截),可以构成 8 个角,俗称"三线八角",在这八个角中,同一顶点上两个角的关系前面已经学过,今天,我们来研究不同顶点的两个角的关系。(教学说明:通过在两线相交的基础上填线的方式引入了两条直线被第三条直线所截的情形,这1可以让学生认识到这是相交线的又一种情况,而我们这节课所要研究的角也是与相交线有关系的角,从而让学生认识事物间是发展变化的辩证关系。)二、 合作交流 探究新知(设计说明:利用问题串引导学生自主探究,让学生在探究中了解概念的形成,在合作交流中辨是非从而加深学识对知识的理解。)1、探索同位角的概念在上面的“三线八角”图中,直线 AB、CD 是被截直线,EF 是截线。问题 1:观察图中的∠1 和∠5,它们与截线及两条被截直线在位置上有什么特点?你能给它们起个名字吗?学生先独立观察后小组交流从而归纳得出:这两个角(1)分别在被截直线 AB、CD 的上方,(2)...