电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

乘法公式练习VIP免费

乘法公式练习_第1页
1/4
乘法公式练习_第2页
2/4
乘法公式练习_第3页
3/4
乘法公式练习1.(2004·青海)下列各式中,相等关系一定成立的是( )A.(x-y)2=(y-x)2B.(x+6)(x-6)=x2-6C.(x+y)2=x2+y2D.6(x-2)+x(2-x)=(x-2)(x-6)2.(2003·泰州)下列运算正确的是( )A.x2+x2=2x4B.a2·a3= a5C.(-2x2)4=16x6D.(x+3y)(x-3y)=x2-3y23.(2003·河南)下列计算正确的是( )A.(-4x)·(2x2+3x-1)=-8x3-12x2-4xB.(x+y)(x2+y2)=x3+y3C.(-4a-1)(4a-1)=1-16a2D.(x-2y)2=x2-2xy+4y24.(x+2)(x-2)(x2+4)的计算结果是( )A.x4+16B.-x4-16C.x4-16D.16-x45.19922-1991×1993 的计算结果是( )A.1B.-1C.2D.-26.对于任意的整数 n,能整除代数式(n+3)(n-3)-(n+2)(n-2)的整数是( )A.4B.3C.5D.27.( )(5a+1)=1-25a2,(2x-3) =4x2-9,(-2a2-5b)( )=4a4-25b28.99×101=( )( )= .9.(x-y+z)(-x+y+z)=[z+( )][ ]=z2-( )2.10.多项式 x2+kx+25 是另一个多项式的平方,则 k= .11.(a+b)2=(a-b)2+ ,a2+b2=[(a+b)2+(a-b)2]( ),a2+b2=(a+b)2+ ,a2+b2=(a-b)2+ .12.计算.(1)(a+b)2-(a-b)2;(2)(3x-4y)2-(3x+y)2;(3)(2x+3y)2-(4x-9y)(4x+9y)+(2x-3y)2;(4)1.23452+0.76552+2.469×0.7655;(5)(x+2y)(x-y)-(x+y)2.13.已知 m2+n2-6m+10n+34=0,求 m+n 的值14.已知 a+=4,求 a2+和 a4+的值.15.已知(t+58)2=654481,求(t+84)(t+68)的值.16.解不等式(1-3x)2+(2x-1)2>13(x-1)(x+1).17.已知 a=1990x+1989,b=1990x+1990,c=1990x+1991,求 a2+b2+c2-ab-ac-bc 的值.18.(2003·郑州)如果(2a+2b+1)(2a+2b-1)=63,求 a+b 的值.19.已知(a+b)2=60,(a-b)2=80,求 a2+b2及 ab 的值.20.化简(x+y)+(2x+)+(3x+)+…+(9x+),并求当 x=2,y=9 时的值.21.若 f(x)=2x-1(如 f(-2)=2×(-2)-1,f(3)=2×3-1),求的值.22.观察下面各式:12+(1×2)2+22=(1×2+1)222+(2×2)2+32=(2×3+1)232+(3×4)2+42=(3×4+1)2……(1)写出第 2005 个式子;(2)写出第 n 个式子,并说明你的结论.参考答案1.A 2.B 3.C 4.C 5.A 6.C 7.1-5a 2x+3 -2a2+5b 8.100-1 100+1 9999 9.x-y z-(x-y) x-y 10.±10 11.4ab - 2ab 2ab12.(1) 原 式 =4ab ; (2) 原 式 =-30xy+15y ; (3) 原 式 =-8x2+99y2 ; (4) 提 示 : 原 式=1.23452+2×1.2345×0.7655+0.76552=(1.2345+0.7655)2=22=4. (5)原式=-xy-3y2.13.提示:逆向应用整式乘法的完全平方公式和平方的非负性. m2+n2-6m+10n+34=0,∴(m2-6m+9)+(n2+10n+25)=0,即(m-3)2+(n+5)2=0,由平方...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

乘法公式练习

您可能关注的文档

百万精品文档+ 关注
实名认证
内容提供者

中小学学习资料教案课件

相关文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部