1 第一章部分课后习题参考答案 16 设p、q 的真值为0 ;r、s 的真值为1 ,求下列各命题公式的真值。 (1)p∨(q∧r) 0∨(0∧1) 0 (2)(p↔r)∧(﹁q∨s) (0↔1)∧(1∨1) 0∧1 0. (3)( p∧ q∧r)↔(p∧q∧﹁r) (1∧1∧1) ↔ (0∧0∧0) 0 (4)( r∧s)→(p∧ q) (0∧1)→(1∧0) 0→0 1 17.判断下面一段论述是否为真:“ 是无理数。并且,如果 3 是无理数,则2 也是无理数。另外 6 能被 2 整除,6 才能被 4 整除。” 答:p: 是无理数 1 q: 3 是无理数 0 r: 2 是无理数 1 s: 6 能被 2 整除 1 t: 6 能被 4 整除 0 命题符号化为: p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。 19.用真值表判断下列公式的类型: (4)(p→q) →( q→ p) (5)(p∧r) ( p∧ q) (6)((p→q) ∧(q→r)) →(p→r) 答: (4) p q p→q q p q→ p (p→q)→( q→ p) 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 所以公式类型为永真式 (5)公式类型为可满足式(方法如上例) (6)公式类型为永真式(方法如上例) 第二章部分课后习题参考答案 3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值. 2 (1) (p∧q→q) (2)(p→(p∨q))∨(p→r) (3)(p∨q)→(p∧r) 答:(2)(p→(p∨q))∨(p→r) ( p∨(p∨q))∨( p∨r) p∨p∨q∨r 1 所以公式类型为永真式 (3) P q r p∨q p∧r (p∨q)→(p∧r) 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 所以公式类型为可满足式 4.用等值演算法证明下面等值式: (2)(p→q)∧(p→r) (p→(q∧r)) (4)(p∧ q)∨( p∧q) (p∨q) ∧ (p∧q) 证明(2)(p→q)∧(p→r) ( p∨q)∧( p∨r) p∨(q∧r)) p→(q∧r) (4)(p∧ q)∨( p∧q) (p∨( p∧q)) ∧( q∨( p∧q) (p∨ p)∧(p∨q)∧( q∨ p) ∧( q∨q) 1∧(p∨q)∧ (p∧q)∧1 (p∨q)∧ (p∧q) 5.求下列公式的主析取范式与主合取范式,并求成真...