摘 要从导体表面电场的特征和电荷分布的微观解释导体表面电场的特性出发,我们对孤立带电导体凹凸形尖端的表面电荷与电场分布进行了定性计算及分析。依据该带电导体的等势面与电场线正交的特征,得出了该带电导体尖端处表面电荷与表面电场间的定量关系,而且进行了讨论。对于孤立的带电导体来说,电荷分布规律有以下的结论,其上面电荷的多少与该处表面的曲率有关,导体表面凸出尖端的地方 ( 曲率较大),面电荷密度 σ 较大;表面较平缓的地方 ( 曲率较小) 电荷密度 σ 较小;表面凹下去的地方 ( 曲率小于零) σ 更小。本文将进行分析说明:电荷密度分布与曲率成正比只是一个大致的定性的规律,不能简单地根据两处的曲率大小来比较两处的电荷密度的大小。关键词:带电导体 电荷面密度 电场分布 电荷面密度 表面曲率目录一、导体表面电荷分布的有关因素....................................11 电荷分布的微观解释...........................................12 尖端处表面电荷...............................................13 电荷分布与表面曲率关系.......................................1二、导体表面的电场................................................41 电场分布的描述...............................................42 凸端处的场强.................................................63 凹端处的场强.................................................7三、结 论........................................................8参考文献..........................................................9一、导体表面电荷分布的有关因素1 电荷分布的微观解释我们所说的导体带电,通常是指正负电荷中和后会出现多余“净电荷”。若正电荷数量大于负电荷,则中和后,导体就会多余出正的“净电荷”,这些“净电荷”都会带有正的电性,我们也因此判定导体带正电。又根据同种电荷间有库伦力的作用,导体表面相同电性的电荷将会齐向着斥力小的方向运动。此时若导体呈球状,电荷也会自由移动至均匀分布于球体表面,进而形成均匀的对称电场。但若导体非球状,表面有凸凹时,净电荷依旧向着斥力最小的方向自由移动。但由于凸面的顶端据其他表面最远,会使得此处电荷受其他电荷的斥力最小。因此会吸引大量电荷移向此处,导致电荷分布最集中,随之电场也会最强。反之,凹面距离其余电荷最近,库伦力也最大,因此电荷密...