几个三角恒等式●三维目标1.知识与技能(1)能够推导“和差化积”及“积化和差”公式,并对此有所了解.(2)能较熟练地运用公式进行化简、求值、探索和证明一些恒等关系,进一步体会这些三角恒等变形公式的意义和作用,体会如何综合利用这些公式解决问题.(3)揭示知识背景,培养学生的应用意识与建模意识.2.过程与方法让学生自己导出“和差化积”及“积化和差”公式,领会这些三角恒等变形公式的意义和作用,体会公式所蕴涵的和谐美,激发学生学数学的兴趣;同时让学生初步体会如何利用三角函数研究简单的实际问题.通过例题讲解,总结方法.通过做练习,巩固所学知识.3.情感、态度与价值观通过本节的学习,使学生对三角恒等变形公式的意义和作用有一个初步的认识;理解并掌握三角函数各个公式的灵活变形,体会公式所蕴涵的和谐美,增强学生灵活运用数学知识解决实际问题的能力,●重点难点重点:积化和差公式、和差化积公式、万能公式及半角公式的推导.难点:综合运用公式进行三角恒等变换.●教学建议 1.关于积化和差公式的教学建议教师首先让学生复习两角和与差的正、余弦公式,观察公式左边的结构形式,如:sin(α+β)=sin αcos β+cos αsin β,sin(α-β)=sin αcos β-cos αsin β.引导学生自己导出三角函数的积化和差公式及 sin αcos β=[sin(α-β)+sin(α+β)]等等.2.关于和差化积问题的教学建议教师要强调把两个三角函数式的和差化为积的形式,最后结果应是几个三角函数式的积的最简形式.●教学流程⇒⇒通过例 1 及其变式训练,使学生掌握利用三角函数的积化和差与和差化积公式进行三角函数式的求值计算的方法.⇒⇒⇒⇒课标解读1.能运用所学知识,推导积化和差与和差化积公式、万能公式.2.能利用所学公式进行三角恒等变换.(重点、难点)积化和差与和差化积公式【问题导思】 利用两角和与差的正弦公式能否用 sin(α+β)与 sin(α-β)表示 sin αcos β和 cos α·sin β?【提示】 , ∴sin(α+β)+sin(α-β)=2sin αcos β,即 sin αcos β=[sin(α+β)+sin(α-β)].同理得 cos αsin β=[sin(α+β)-sin(α-β)].sin αcos β=[sin( α + β ) + sin( α - β )] cos αsin β=[sin( α + β ) - sin( α - β )] cos αcos β=[cos( α + β ) + cos( α - β )] sin αsin β=-[cos( α + ...